Study on Rheology and Reaction Kinetics of Low Corrosion Self-Heating Gelling Fracturing Fluids
-
摘要: 在稠油储层压裂改造过程中,压裂液进入裂缝后会降低储层温度,导致裂缝周围原油黏度增加,甚至会堵塞地层。针对此问题,以尿素、亚硝酸钠和氯化铵为生热材料,盐酸为催化剂,耐温耐盐共聚物FS-1为增稠剂,有机锆为交联剂,应用溶液共混法制备了一种低腐蚀自生热冻胶压裂液,评价了压裂液体系的生热产气性能、流变性和耐腐蚀性等性能,测试了反应产生气体组分,探究了不同因素对生热反应速率的影响规律,明确了其反应动力学参数。结果表明:自生热体系具有良好生热生气性能,当反应物浓度、酸性催化剂浓度和初始温度越大,峰值温度越高,生气量越大,到达峰值温度所需时间越短,但生气量随初始温度的增加而略有减少;体系中NH4Cl可大幅降低盐酸浓度,不仅降低了压裂液对压裂管线设备的腐蚀速率,而且有利于压裂液成胶,反应产生大量CO2和N2气体及热量;冻胶一定程度上弱化了生热剂的生热产气性能,60℃、170 s−1下剪切90 min,黏度保持在50 mPa·s以上;自生热冻胶压裂液反应级数m=2.67,n=1.69,活化能ΔE=49.54 kJ/mol,指前因子A=6.82 × 102,相比于自生热体系反应速度大幅下降,可通过反应动力学方程预测该体系反应过程参数并进行调控,为自生热压裂液优化设计提供依据。Abstract: In heavy oil reservoir fracturing, the fracturing fluid, after entering into the reservoir, causes the reservoir temperature to decrease and the viscosity of the crude oils around the fractures to increase to even block the pore throats of the formation. To deal with this problem, a low corrosion self-heating gelling fracturing fluid has been formulated through solution blending method using urea, sodium nitrite and ammonium chloride as heat generation materials, hydrochloric acid as catalyst, the high temperature salt-resistant copolymer FS-1 as viscosifier and organic zirconium as crosslinking agent. In laboratory experiment, the heat generation and gas production properties, rheology and corrosion resistant performance of the fracturing fluid were evaluated, the constituents of the gas produced were identified, the effects of different factors on the rate of heat generation reaction were investigated, and the kinetic parameters of the heat generation reaction were understood. It was found that the self-heating generation system has good heat generation and gas production properties. The higher the concentrations of the reactants, the concentration of the acid catalyst and the initial temperature, the higher the amount of gas produced, and the shorter the time required to reach the highest temperature; on the other hand, the amount of gas is slightly decreasing with an increase in the initial temperature. In the reactant system, the existence of ammonium chloride remarkably reduces the concentration of chloric acid, this not only reduces the rate of corrosion of the fracturing fluid to the pipes for fracturing, but also is beneficial to the gelling of the fracturing fluid. The reaction produces large amount of CO2 and N2 as well as heat. Gelling of the fracturing fluid to some extent weakens the heat generation and gas production properties of the heat generation agents. The gelling fracturing fluid, after shearing at 60℃ and 170 s-1 for 90 min, has viscosity of greater than 50 mPa·s. The reaction order m and n, the activation energy ΔE and the preexponential factor A of the reaction are 2.76, 1.69, 49.54 kJ/mol and 6.82 × 102, respectively. Compared with the self-heating system, the reaction rate of the self-heating gelling fracturing fluid system is greatly reduced. The process parameters of this reaction can be predicted using reaction kinetic equation and adjusted. This study has provided a base for the optimization and design of self-heating fracturing fluids.
-
Key words:
- Low corrosion /
- In-situ heating /
- Gel fracturing fluid /
- Rheological properties /
- Reaction kinetics
-
表 1 自生热压裂破胶液体系腐蚀性能对比
挂片编号 2 h腐蚀速率/(
g·m−2·h−1)4 h腐蚀速率/(
g·m−2·h−1)腐蚀
现象N-1 0.1653 0.1894 表面光滑,无点蚀或坑蚀 N-2 0.1734 0.1923 N-3 0.1721 0.1941 平均腐蚀速率/(g·m−2·h−1) 0.1703 0.1919 表 2 反应动力学参数
体系 反应级数m 反应级数n 活化能ΔE/(kJ·mol−1) 指前因子A 反应动力学方程 自生热体系 1.96 2.13 52.42 5.78× 107 $ \dfrac{{dC}}{{dt}} = - {\text{5}}{\text{.78 }} \times {\text{ }}{10^7}exp\left( { - 52.42/{\text{R}}T} \right){C_{{\text{H}} + }}^{1.96}{C_0}^{2.13} $ 自生热冻胶压裂液 2.67 1.69 49.54 6.82 × 102 $ \dfrac{{dC}}{{dt}} = - {\text{6}}.82 \times {10^2}exp\left( { - 49.54/{\text{R}}T} \right){C_{{\text{H}} + }}^{2.67}{C_0}^{1.69} $ -
[1] 王红科, 刘音, 何武, 等. 高温水配制压裂液技术研究与现场应用[J]. 钻井液与完井液,2020,37(3):384-388. doi: 10.3969/j.issn.1001-5620.2020.03.020WANG Hongke, LIU Yin, HE Wu, et al. Preparation of fracturing fluids with hot water[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):384-388. doi: 10.3969/j.issn.1001-5620.2020.03.020 [2] 田相友, 毕炎超, 肖峰, 等. 渤海低渗稠油油田降压解堵技术研究[J]. 化工技术与开发,2021,50(10):21-24. doi: 10.3969/j.issn.1671-9905.2021.10.006TIAN Xiangyou, BI Yanchao, XIAO Feng, et al. Study on depressurization and plug removal technology in Bohai low permeability heavy oil field[J]. Technology & Development of Chemical Industry, 2021, 50(10):21-24. doi: 10.3969/j.issn.1671-9905.2021.10.006 [3] 安杰, 喻建, 邵东波, 等. 长庆油田环西-彭阳探区长8油层自生热压裂工艺研究与应用[J]. 复杂油气藏,2021,14(4):106-111.AN Jie, YU Jian, SHAO Dongbo, et al. Research and application of self-generated heat fracturing technology for Chang 8 reservoir in Huanxi-Pengyang exploration area of Changqing Oilfield[J]. Complex Hydrocarbon Reservoirs, 2021, 14(4):106-111. [4] 王成旺, 刘晓庆, 陈文斌, 等. 彭阳油田自生热增能压裂技术[J]. 油气井测试,2022,31(6):27-33.WANG Chengwang, LIU Xiaoqing, CHEN Wenbin, et al. Application of authigenic heat energized fracturing technology in Pengyang Oilfield[J]. Well Testing, 2022, 31(6):27-33. [5] 朱凡臣, 姜涛, 段志刚, 等. 边底水稠油油藏自生热增能体系研究[J]. 内蒙古石油化工,2019,45(10):108-110.ZHU Fanchen, JIANG Tao, DUAN Zhigang, et al. Study on self generated heat energy-increasing system for edge and Bottom water heavy oil reservoir[J]. Inner Mongolia Petrochemical Industry, 2019, 45(10):108-110. [6] LIU S, ZHANG Y Y, LUO Y J, et al. Analysis of hydrate exploitation by a new in-situ heat Generation method with chemical reagents based on heat utilization[J]. Journal of Cleaner Production, 2020, 249:119399. doi: 10.1016/j.jclepro.2019.119399 [7] 雷明, 罗明良, 战永平, 等. 化学自生热压裂液技术研究进展[J]. 油田化学,2022,39(1):170-178,185.LEI Ming, LUO Mingliang, ZHAN Yongping, et al. Research progress of fracturing fluid with chemical in-situ heat Generation[J]. Oilfield Chemistry, 2022, 39(1):170-178,185. [8] 张璐, 邹剑, 高尚, 等. 渤海油田自生热体系室内研究[J]. 科学技术与工程,2019,19(16):75-81. doi: 10.3969/j.issn.1671-1815.2019.16.010ZHANG Lu, ZOU Jian, GAO Shang, et al. Laboratory study on autogenous heat system suitable for Bohai oilfield[J]. Science Technology and Engineering, 2019, 19(16):75-81. doi: 10.3969/j.issn.1671-1815.2019.16.010 [9] VERSHININ V, FEDOROV K, GANKIN Y, et al. Control methods of propellant fracturing for production stimulation[C]//Paper presented at the SPE Russian Petroleum Technology Conference. Moscow, Russia, 2017: SPE-187691-MS. [10] 周长顺, 刘怡君, 吕勇胜, 等. 自生气泡沫压裂工艺技术研究与试验[J]. 石油化工应用,2022,41(10):58-62. doi: 10.3969/j.issn.1673-5285.2022.10.014ZHOU Changshun, LIU Yijun, LV Yongsheng, et al. Research and test of autogenetic gas foam fracturing technology[J]. Petrochemical Industry Application, 2022, 41(10):58-62. doi: 10.3969/j.issn.1673-5285.2022.10.014 [11] 宫大军, 吴志明, 白岩, 等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261. doi: 10.12358/j.issn.1001-5620.2024.02.016GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261. doi: 10.12358/j.issn.1001-5620.2024.02.016 [12] 熊波, 徐敏杰, 王丽伟, 等. 清洁自生热压裂液技术与实验方法[J]. 钻井液与完井液,2016,33(1):118-121.XIONG Bo, XU Minjie, WANG Liwei, et al. Clear autogenetic heat fracturing fluid and its experiment[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):118-121. [13] 张家由, 方行, 赵素惠, 等. 自生热增压类泡沫压裂液研制及应用[J]. 天然气技术与经济,2011,5(2):44-47,75.ZHANG Jiayou, FANG Heng, ZHAO Suhui, et al. Autogenic heat and loading foam fracturing fluid and its application[J]. Natural Gas Technology, 2011, 5(2):44-47,75. [14] 甄延忠, 营虎虎, 韩进, 等. 低腐蚀自生热压裂液体系的室内研究[J]. 陕西科技大学学报(自然科学版),2013,31(1):62-65.ZHEN Yanzhong, YING Huhu, HAN Jin, et al. Research on low corrosion of fracturing fluid in authigenic heat system In-door[J]. Journal of Shaanxi University of Science and Technology(Natural Science Edition), 2013, 31(1):62-65. [15] NGUYEN D A, IWANIW M A, FOGLER H S. Kinetics and mechanism of the reaction between ammonium and nitrite ions: Experimental and theoretical studies[J]. Chemical Engineering Science, 2003, 58(19):4351-4362. doi: 10.1016/S0009-2509(03)00317-8 [16] 战永平, 罗明良, 付春丽, 等. 考虑转化率的亚硝酸钠与氯化铵体系反应动力学[J]. 中国石油大学学报(自然科学版),2023,47(3):173-180.ZHAN Yongping, LUO Mingliang, FU Chunli, et al. Reaction kinetics of Sodium nitrite and ammonium chloride system considering conversion rate[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3):173-180. [17] 王业飞, 钱程, 姬宗江, 等. 亚硝酸钠与氯化铵体系的反应特征[J]. 石油学报,2020,41(2):226-234.WANG Yefei, QIAN Cheng, JI Zongjiang, et al. Reaction characteristics of Sodium nitrite and ammonium chloride system[J]. Acta Petrolei Sinica, 2020, 41(2):226-234. [18] ALADE O S, MAHMOUD M, HASSAN A, et al. Evaluation of kinetics and energetics of thermochemical fluids for enhanced recovery of heavy oil and liquid condensate[J]. Energy & Fuels, 2019, 33(6):5538-5543. [19] WANG X Y, CUI Y Q, LIU C, et al. Improved kinetic Equations for a NaNO2/NH4Cl Heat Generating System and their Implications in Oil Production[J]. Chemistry and Technology of Fuels and Oils, 2019, 55(5):623-634. doi: 10.1007/s10553-019-01075-9 [20] 白岩. 定优胶压裂液特性及应用前景展望[J]. 钻井液与完井液,2024,41(4):546-550. doi: 10.12358/j.issn.1001-5620.2024.04.017BAI Yan. Characteristics and application prospects of diutan gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):546-550. doi: 10.12358/j.issn.1001-5620.2024.04.017 [21] 何乐, 王世彬, 郭建春, 等. 高矿化度水基压裂液技术研究进展[J]. 油田化学,2015,32(4):621-627.HE Le, WANG Shibin, GUO Jianchun, et al. Research progress of high-salinity water based fracturing fluids[J]. Oilfield Chemistry, 2015, 32(4):621-627. [22] 张学刚, 王秀宇, 王冠华, 等. 铵盐与亚硝酸盐化学生热体系实验研究[J]. 应用化工,2016,45(2):393-396.ZHANG Xuegang, WANG Xiuyu, WANG Guanhua, et al. Experiment research on chemical heat and Nitrogen generating system[J]. Applied Chemical Industry, 2016, 45(2):393-396. [23] WANG S S, CHEN C L, SHIAU B, et al. In-situ CO2 Generation for EOR by using urea as a gas Generation agent[J]. Fuel, 2018, 217:499-507. doi: 10.1016/j.fuel.2017.12.103 [24] WANG S S, YUAN Q W, KADHUM M, et al. In Situ carbon dioxide generation for improved recovery: Part II. concentrated urea solutions[C]//Paper presented at the SPE Improved Oil Recovery Conference. Tulsa, Oklahoma, 2018: SPE-190192-MS. [25] 吴安明, 陈茂涛, 顾树人, 等. NaNO2与NH4Cl反应动力学及其在油田的应用研究[J]. 石油钻采工艺,1995,17(5):60-64.WU Anming, CHEN Maotao, GU Shuren, et al. Study on the reaction kinetics of Sodium nitrite with ammonium chloride and its applications in oilfields[J]. Oil Drilling & Production Technology, 1995, 17(5):60-64. [26] 张录社, 徐岗, 陈刚, 等. 亚硝酸钠与氯化铵反应动力学研究[J]. 当代化工,2012,41(9):930-931,953.ZHANG Lushe, XU Gang, CHEN Gang, et al. Study on the kinetics of reaction between NaNO2 and NH4Cl[J]. Contemporary Chemical Industry, 2012, 41(9):930-931,953. -