Mechanisms of Organic Phosphonate Retarders to Abnormally Thicken Oil Well Cement
-
摘要: 有机膦酸盐是延长油井水泥浆中高温稠化时间的常用缓凝剂。通过讨论乙二胺四亚甲基膦酸钠(EDTMPS)缓凝剂对G级高抗硫(HSR)油井水泥浆稠化性能的影响,研究了EDTMPS掺量对4种不同厂家水泥稠化性能的影响。使用水化热、XRD和溶解度实验研究了EDTMPS缓凝剂在不同厂家油井水泥浆中的作用机理。结果表明,EDTMPS缓凝剂抑制了二水石膏的溶解,同时促进了C3A溶解。失去二水石膏缓凝作用的C3A快速水化,导致水泥浆初始稠度上升;而EDTMPS缓凝剂促进了半水石膏溶解,释放的SO42−延缓了C3A的水化作用。通过调整G级HSR油井水泥中C3A和二水石膏/半水石膏的含量匹配关系,可以改善水泥与EDTMPS缓凝剂的配伍性。Abstract: Organic phosphonates are generally used as retarders for cement slurries at high temperatures in Yanchang oilfield. This paper discusses the effects of the retarder sodium ethylene-diamine tetramethylene-phosphonate (EDTMPS) on the thickening performance of the class G high-sulfur-resistant (HSR) oil-well cements from four different manufacturers. The mechanisms of EDTMPS in retarding the thickening time of the four cement slurries were investigated through hydration heat measurement, XRD experiment and solubility measurement. The results of the measurement and experiment show that in the reactions of EDTMPS with the cements, EDTMPS inhibits the solution of dihydrate gypsum and accelerates the solution of C3A, thus the retarding effect of dihydrate gypsum is inhibited and C3A becomes fast hydrated, leading to an increase in the initial consistency of the cement slurry. On the other hand, EDTMPS can accelerate the solution of hemihydrate gypsum which releases SO42−. The SO42− ions released slow down the hydration process of C3A. By adjusting the concentrations of C3A, dihydrate gypsum and hemihydrate gypsum in the class G HSR oil-well cement slurry, the compatibility of the cement slurry with EDTMPS can be improved.
-
Key words:
- Oil-well cement /
- High temperature /
- Organic phosphonate /
- Thickening proformance /
- Microstructure
-
表 1 4个厂家油井水泥和一种熟料的矿物组成
% 水泥 C3S C2S C3A C4AF 二水石膏 半水石膏 无水石膏 Cem1 62.3 20.4 2.5 12.7 1.3 0.7 0.1 Cem2 50.9 30.0 2.4 13.1 2.3 0.6 0 Cem3 60.3 21.5 1.6 13.6 0 2.4 0.6 Cem4 53.4 23.9 4.1 13.6 3.0 2.0 0 Clin 62.5 18.9 2.4 15.5 0 0 0 表 2 二水石膏和半水石膏的化学成分
% 石膏 SiO2 Al2O3 Fe2O3 TiO2 CaO MgO SO3 K2O Na2O LOI 二水石膏(G) 0 0 0 0 32.23 0 46.25 0 0.02 21.50 半水石膏(B) 0 0.06 0.02 0.01 38.76 0 54.58 0 0 6.57 注:LOI指1000℃下煅烧2 h后的质量损失百分比。 表 3 不同掺量EDTMPS缓凝剂对水泥浆稠化性能的影响(80℃,常压)
水泥 EDTMPS/
%t稠化/
mint过渡/
min初始
稠度/Bc稠化性能 Cem1 0.1 106 60 31 稠化反转 0.2 57 21 28 0.3 10 9 70 0.4 19 18 70 0.5 4 3 70 Cem2 0.1 143 21 23 异常增稠 0.2 181 13 42 0.3 241 19 49 0.4 371 13 42 0.5 548 30 54 Cem3 0.1 139 18 17 稠化曲线平滑,过渡时间短,近乎直角稠化 0.2 215 16 18 0.3 301 19 15 0.4 441 22 19 0.5 610 30 17 Cem4 0.1 110 20 7 稠化曲线平滑,过渡时间短,近乎直角稠化 0.2 159 19 9 0.3 232 20 10 0.4 362 28 11 0.5 715 33 9 表 4 掺入不同掺量EDTMPS缓凝剂的水泥浆物相组成定量结果(80℃)
% 编号 C3S C2S C4AF C3A 二水石膏 CH 非晶相 Cem1-0-1 h 59.2 15.1 11.3 0.8 0.3 0 13.5 Cem1-0-3 h 59.0 15.0 11.2 0.6 0 0 14.0 Cem1-3-1 h 60.5 15.5 11.3 1.5 0 0 11.8 Cem1-3-3 h 59.9 15.5 11.5 1.1 0 0 12.0 Cem1-5-1 h 61.5 15.8 11.5 0.6 0 0 10.5 Cem1-5-3 h 61.8 15.5 11.6 0.1 0 0 10.7 Cem2-0-1 h 44.9 30.3 12.5 1.3 3.1 0.3 8.0 Cem2-0-3 h 30.0 30.1 11.3 0 0 4.1 25.0 Cem2-3-1 h 41.1 30.1 12.1 0.7 2.1 0 13.1 Cem2-3-3 h 42.1 30.0 12.0 0.5 1.4 0.1 14.0 Cem2-5-1 h 44.8 30.4 12.4 0.6 1.8 0 10.1 Cem2-5-3 h 42.5 30.4 12.6 0.3 1.3 0 12.9 Cem3-0-1 h 53.2 19.3 11.6 1.0 0 0.5 14.4 Cem3-0-3 h 20.4 19.3 11.1 0 0 11.3 37.9 Cem3-3-1 h 54.9 19.1 11.5 1.2 0 11.5 13.3 Cem3-3-3 h 51.2 19.1 11.5 1.2 0 0 17.0 Cem3-5-1 h 54.9 19.7 11.9 1.5 0 0 12.0 Cem3-5-3 h 56.4 19.3 11.8 1.6 0 0 10.9 Cem4-0-1 h 53.0 19.7 12.4 2.7 2.7 1.3 8.1 Cem4-0-3 h 22.0 19.6 10.5 1.8 0 13.0 32.3 Cem4-3-1 h 52.1 17.1 12.5 3.0 3.3 0.8 10.3 Cem4-3-3 h 53.5 18.9 11.0 1.9 3.0 1.0 10.6 Cem4-5-1 h 53.1 20.0 11.9 3.4 3.4 1.3 7.4 Cem4-5-3 h 53.6 19.5 11.5 2.9 2.9 1.9 8.4 表 5 石膏在纯水或ETDMPTS溶液中不同溶解时间的质量变化(80℃)
g 溶剂 溶质 W0 W5 W30 纯水 二水石膏 10.00 9.55 9.21 半水石膏 10.00 9.05 10.80 0.5%EDTMPS 二水石膏 10.00 9.70 9.62 半水石膏 10.00 8.89 8.75 注:W0为石膏初始质量;W5和W30分别为石膏溶解5 min和30 min后的剩余质量(60℃真空干燥)。 表 6 不同石膏在水中溶解不同时间的SO42−吸光度(80℃)
石膏 5 min 10 min 20 min 二水石膏 1.85 2.07 1.95 半水石膏 1.92 1.11 1.11 二水石膏+0.5%EDTMPS 0.71 0.76 0.66 半水石膏+0.5%EDTMPS 2.13 2.00 1.91 -
[1] 陈平. 钻井与完井工程[M]. 北京: 石油工业出版社, 2011.CHEN Ping. Drilling and completion engineering[M]. Beijing: Petroleum industry press, 2011. [2] 夏元博, 曾建国, 张雯斐. 页岩气井固井技术难点分析[J]. 天然气勘探与开发,2016,39(1):74-76. doi: 10.3969/j.issn.1673-3177.2016.01.019XIA Yuanbo, ZENG Jianguo, ZHANG Wenfei. Techno-logic challenges in cementing shale-gas wells[J]. Natural Gas Exploration and Development, 2016, 39(1):74-76. doi: 10.3969/j.issn.1673-3177.2016.01.019 [3] 孙坤忠, 陶谦, 周仕明, 等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55-60.SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the dingshan block[J]. Petroleum Drilling Techniques, 2015, 43(3):55-60. [4] 王涛,申峰,展转盈,等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术,2023,51(3):51-57.WANG Tao, SHEN Feng, ZHAN Zhuanying, et al. Ductile nano-cement slurry cementing for slim-hole horizontal shale gas wells[J]. Petroleum Drilling Techniques,2023,51(3):51-57. [5] 王磊, 曾义金, 张青庆, 等. 高温环境下油井水泥石力学性能试验[J]. 中国石油大学学报(自然科学版),2018,42(6):88-95.WANG Lei, ZENG Yijin, ZHANG Qingqing, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6):88-95. [6] PERNITES A R B, SANTRA A K. Portland cement solutions for ultra-high temperature wellbore applications[J]. Cement and Concrete Composites, 2016, 72:89-103. doi: 10.1016/j.cemconcomp.2016.05.018 [7] COSTA B L D S, SOUZA G G D, FREITAS J C D O, et al. Silica content influence on cement compressive strength in wells subjected to steam injection[J]. Journal of Petroleum Science and Engineering, 2017, 158:626-633. doi: 10.1016/j.petrol.2017.09.006 [8] LIU X H, JIANG J P, ZHANG H L, et al. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash[J]. Applied Clay Science, 2020, 196:105769. doi: 10.1016/j.clay.2020.105769 [9] 张艺鸽, CATHERINE B, NIKOLAOS V, et al. 高温高压对H级油井水泥早期抗压强度发展的影响[J]. 结构工程师,2016,32(3):64-69. doi: 10.3969/j.issn.1005-0159.2016.03.010ZHANG Yige, CATHERINE B, NIKOLAOS V, et al. Effects of temperature and pressure on the compressive strength of class H oil well cement[J]. Structural Engineers, 2016, 32(3):64-69. doi: 10.3969/j.issn.1005-0159.2016.03.010 [10] 刘建,张泽宇,魏浩光,等. 新型油井水泥缓凝剂的研制[J]. 钻井液与完井液,2022,39(5):615-621.LIU Jian, ZHANG Zeyu, WEI Haoguang, et al. Development of new oil well cement retarder[J]. Drilling Fluid & Completion Fluid,2022,39(5):615-621. [11] 凌勇,于倩倩,马如然,等. 固井用高温缓凝剂的研究与应用[J]. 钻井液与完井液,2023,40(2):209-215.LING Yong, YU Qianqian, MA Ruran, et al. Study and application of a high temperature retarding agent for well cementing[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):209-215. [12] 林鑫,刘硕琼,夏修建,等. 环氧磷酸缓凝剂研发及抗220 ℃常规密度水泥浆综合性能[J]. 钻井液与完井液,2024,41(2):215-219.LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Development of an epoxy phosphate retarder and a high temperature cement slurry resistant to 220 °C[J]. Drilling Fluid & Completion Fluid, 41(2):215-219. [13] 赵峰,曾雪玲,龙丹,等. 超高温固井水泥添加剂研选及工程性能评价[J]. 钻采工艺,2023,46(4):131-136.ZHAO Feng, ZENG Xuelin, LONG Dan,et al. Development and engineering performance evaluation ofadditives for ultra-high temperature cement slurry[J]. Drilling & Production Technology, 2023,46(4):131-136. [14] BISHOP M, BOTT S G, BARRON A R. A new mechanism for cement hydration inhibition: Solid-State chemistry of Calcium nitrilotris (methylene) triphosphonate[J]. Chemistry of Materials, 2003, 16(15):3074-3088. [15] NALET C, NONAT A. Ionic complexation and adsorption of small organic molecules on Calcium silicate hydrate: Relation with their retarding effect on the hydration of C3S[J]. Cement and Concrete Research, 2016, 89:97-108. doi: 10.1016/j.cemconres.2016.08.012 [16] NELSON E B, GUILLOT D. Well cementing[M]. Houston, Texas, USA: Schlumberger, 2006. [17] 顾光伟, 姚晓, 周兴春, 等. G级高抗硫油井水泥稠化性能异常原因分析[J]. 钻井液与完井液,2015,32(5):49-53.GU Guangwei, YAO Xiao, ZHOU Xingchun, et al. Analysis of abnormal thickening behavior of the class G high sulfate resistance oil well cement[J]. Drilling Fluid & Completion Fluid, 2015, 32(5):49-53. [18] API. API RP 10B-2, Recommended practice for testing well cements[S]. Washington, DC: API, 2013. [19] TOBY B H. Von dreele R B. GSAS-II: the Genesis of a modern open-source all purpose crystallography software package[J]. Journal of Applied Crystallography, 2013, 46(2):544-549. doi: 10.1107/S0021889813003531 [20] 姚武, 魏永起, 王伟. 基于QXRD/Rietveld法的水泥熟料中晶相与无定形相定量分析[J]. 建筑材料学报,2012,15(5):581-587. doi: 10.3969/j.issn.1007-9629.2012.05.001YAO Wu, WEI Yongqi, WANG Wei. Quantitative analysis of crystal and amorphous phases in clinker by QXRD/rietveld method[J]. Journal of Building Materials, 2012, 15(5):581-587. doi: 10.3969/j.issn.1007-9629.2012.05.001 -