Preparation and Application of a High Temperature Suspension Stabilizing Filter Loss Reducer for Cement Slurries
-
摘要: 青海油田柴达木盆地地温梯度高且多处于地层超压带或邻近区带,深井超深井固井过程中,对高密度水泥浆高温高压工况下的失水、流变以及热冲击后的沉降稳定性、力学性能等提出了更高的要求。通过接枝聚合制备了含有温敏基团和支链结构的悬浮稳定型降失水剂DFS-200,并对其综合性能进行了评价。结果表明,DFS-200可将2.10~2.30 g/cm3水泥浆体系高温工况下的API失水量控制在50 mL以内,游离液为0、密度差小于0.03 g/cm3,流变和稠化性能良好,浆体“低温不增稠、高温不稀释”;水泥石强度发育快,静胶凝强度过渡时间短,200℃下48 h抗压强度大于30 MPa、无衰减。应用DFS-200在柴达木盆地目的层尾管固井中进行了多次现场试验,效果良好,为改善青海油田深井超深井封固质量、保障井筒完整性提供了技术支撑。Abstract: High formation temperature gradients prevail in the Qinghai Oilfield (Tsaidam Basin). High bottom hole temperatures in deep and ultra-deep wells plus high formation pressures from the over-pressurized formation belts impose rigorous requirements on cement slurries as to their high temperature high pressure (HTHP) filter losses and rheology, the settling stability and mechanical performance after experiencing heat impact. To deal with these situations, a suspension stabilizing filter loss reducer DFS-200 containing temperature-sensitive groups and branched chain structures was developed. Evaluation of the general performance of DFS-200 shows that it can reduce the high temperature filter loss of a cement slurry (with density between 2.10 g/cm3 and 2.30 g/cm3) to less than 50 mL, and the cement slurry still has zero free water, small density difference between the top cement and the bottom cement of less than 0.03 g/cm3, as well as good rheology and thickening performance. The DFS-200 treated cement slurry does not viscosify at low temperatures and does not thin at elevated temperatures. The strength of the set cement develops quickly, the transition time of the static gel strength of the cement slurry is short. The 200℃ × 48 h compressive strength of the set cement is greater than 30 MPa and does not decline. DFS-200 has been used many times in liner cementing operations in Tsaidam Basin and has gained good results, it has provided a technical support to improving the job quality of cementing the deep and ultra-deep wells in Qinghai Oilfield and also to ensuring the borehole integrity.
-
Key words:
- Filter loss reducer /
- Branched chain structure /
- Settling stability /
- Cement slurry /
- High temperature /
- Deep well
-
表 1 180℃时DFS-200加量对水泥浆体系沉降稳定性的影响
ρ/(g·cm−3) DFS-200/% △ρ/(g·cm−3) 游离液/% 2.10 6.0 0.016 0 6.5 0.014 0 7.0 0.010 0 2.15 6.0 0.022 0 6.5 0.020 0 7.0 0.014 0 2.20 6.0 0.030 0 6.5 0.020 0 7.0 0.018 0 2.25 6.0 0.040 0.25 6.5 0.025 0 7.0 0.020 0 2.30 6.0 0.054 0.60 6.5 0.038 0.22 7.0 0.028 0 注:该水泥浆体系的稠化时间为 320~350 min。 表 2 DFS-200加量对水泥浆体系流变性能的影响
DFS-200/
%ρ/
g·cm–3流动度/
cmT/
℃φ300/φ200/φ100/φ3 n K/
Pa·sn6.0 2.10 20.6 室温 213/148/93/7 0.79 0.74 180 145/98/62/6 0.83 0.41 6.5 2.25 19.4 室温 249/174/108/7 0.80 0.87 180 152/101/66/7 0.82 0.45 7.0 2.30 19.1 室温 264/185/116/8 0.79 0.97 180 162/112/70/7 0.82 0.48 表 3 加有DFS-200水泥浆体系的稠化性能
DFS-200/
%ρ/
g·cm–3初始稠度/
Bct稠化/
mint中停/
min中停稠度
冲高/Bc备注 6.0 2.10 21 334 20 13 曲线正常 6.5 2.25 22 328 20 12 曲线正常 7.0 2.30 23 345 20 15 曲线正常 注:稠化实验条件为180℃×105 MPa×90 min。 表 4 加有DFS-200水泥浆体系的力学性能
DFS-200/
%ρ/
g·cm–3静胶凝强度*/min p**/MPa 起强度时间 过渡时间 24 h 48 h 7 d 6.0 2.10 678 9 29.5 35.6 40.7 6.5 2.25 841 14 26.9 33.5 38.8 7.0 2.30 946 12 26.6 31.9 37.1 注:*静胶凝强度实验取井底循环温度(BHCT)180℃;**抗压强度实验取井底静止温度(BHST)200℃。 -
[1] 付锁堂. 柴达木盆地油气勘探潜在领域[J]. 中国石油勘探,2016,21(5):1-10. doi: 10.3969/j.issn.1672-7703.2016.05.001FU Suotang. Potential oil and gas exploration areas in Qaidam Basin[J]. China Petroleum Exploration, 2016, 21(5):1-10. doi: 10.3969/j.issn.1672-7703.2016.05.001 [2] 魏学斌, 沙威, 沈晓双, 等. 柴达木盆地油气勘探历程与启示[J]. 新疆石油地质,2021,42(3):302-311.WEI Xuebin, SHA Wei, SHEN Xiaoshuang, et al. Petroleum exploration history and enlightenment in Qaidam Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3):302-311. [3] 冉钰. 柴达木盆地西部下干柴沟组上段地层超压与油气成藏关系[D]. 北京: 中国石油大学(北京), 2022.RAN Yu. Relationship between overpressure and hydrocarbon accumulation of upper member of lower Ganchaigou formation in the western Qaidam basin[D]. Beijing: China University of Petroleum, 2022. [4] 熊战, 何悦峰, 张闯, 等. 青海油田深探井优快钻井关键技术[J]. 石油钻采工艺,2021,43(6):698-704.XIONG Zhan, HE Yuefeng, ZHANG Chuang, et al. Key technologies for optimized fast drilling of deep exploration wells in Qinghai Oilfield[J]. Oil Drilling & Production Technology, 2021, 43(6):698-704. [5] 李鹤永, 刘震, 党玉琪, 等. 柴西地区地温-地压系统特征及其与油气分布的关系[J]. 石油与天然气地质,2006,27(1):37-43. doi: 10.3321/j.issn:0253-9985.2006.01.007LI Heyong, LIU Zhen, DANG Yuqi, et al. Characteristics of geotemperature-geopressure system in western Qaidam basin and their relationship with oil and gas distribution[J]. Oil & Gas Geology, 2006, 27(1):37-43. doi: 10.3321/j.issn:0253-9985.2006.01.007 [6] 于永金, 夏修建, 王治国, 等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and ultra-deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003 [7] 林鑫,刘硕琼,夏修建,等. 热引发聚合方法制备抗 240℃ 水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104.LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104 [8] 刘学鹏, 刘仍光. 油井水泥降失水剂的作用机理研究[J]. 化学研究与应用,2017,29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027LIU Xuepeng, LIU Rengguang. Mechanisms involved in fluid loss control of oilwell cement slurries by water-soluble polymer[J]. Chemical Research and Application, 2017, 29(12):1928-1932. doi: 10.3969/j.issn.1004-1656.2017.12.027 [9] ZHANG H, HU M, LI P, et al. Covalently bonded AMPSbased copolymer-C-S-H hybrid as a fluid loss additive for oilwell saline cement slurry in UHT environment[J]. Construction and Building Materials, 2023, 378:131177. doi: 10.1016/j.conbuildmat.2023.131177 [10] MAO H, QIU Z, SHEN Z H, et al. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature[J]. Journal of Petroleum Science and Engineering, 2015, 129:1-14. doi: 10.1016/j.petrol.2015.03.003 [11] 李晓岚, 郑志军, 郭鹏. 高温油井水泥降失水剂ZFA-1的合成及性能[J]. 钻井液与完井液,2020,37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013 [12] BISWAL D R, SINGH R P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydrate Polymers, 2004, 57(4):379-387. doi: 10.1016/j.carbpol.2004.04.020 [13] LI P P, XU Y, HU M M, et al. Influence of carboxyl group on filtration property of oil well cement paste at different temperatures investigated using molecular dynamics simulation[J]. Journal of Molecular Liquids, 2020, 306:112943. doi: 10.1016/j.molliq.2020.112943 [14] 孙欣, 曾林. AMPS聚合物类油井水泥缓凝剂研究进展[J]. 青岛科技大学学报(自然科学版),2015,36(S2):1-3.SUN Xin, ZENG Lin. Research progress of well cement retarder with polymers[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2015, 36(S2):1-3. [15] 夏亮亮, 倪涛, 刘昭洋, 等. 新型耐高温油井水泥降失水剂的合成及性能研究[J]. 油田化学,2017,34(3):417-421.XIA Liangliang, NI Tao, LIU Zhaoyang, et al. Synthesis and performance of a new fluid loss additive for cement slurry with high temperature resistance[J]. Oilfield Chemistry, 2017, 34(3):417-421. [16] 罗敏, 黄盛, 何旭晟, 等. 耐200℃固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液,2022,39(4):472-480. doi: 10.12358/j.issn.1001-5620.2022.04.012LUO Min, HUANG Sheng, HE Xusheng, et al. The preparation and performance characterization of a cement suspending agent resistant to 200℃[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):472-480. doi: 10.12358/j.issn.1001-5620.2022.04.012 [17] 王成文, 王桓, 薛毓铖, 等. 高密度水泥浆高温沉降稳定调控热增黏聚合物研制与性能[J]. 石油学报,2020,41(11):1416-1424. doi: 10.7623/syxb202011011WANG Chengwen, WANG Huan, XUE Yucheng, et al. Development and performance of thermo-viscosifying polymer for high temperature sedimentation control of high density cement slurry[J]. Acta Petrolei Sinica, 2020, 41(11):1416-1424. doi: 10.7623/syxb202011011 [18] 张文,刘向君,梁利喜,等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术,2023,51(2):37-45.ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling [J]. Petroleum Drilling Techniques, 2023, 51(2):37-45 [19] 王斌斌. 固井水泥浆流变特性研究与应用[D]. 北京: 中国石油大学, 2015.WANG Binbin. Research and application on rheological property of cement slurry[D]. Beijing: China University of Petroleum, 2015. -