留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑盐浓度的天然气水合物三维相平衡曲面热力学预测模型

张更 李文拓 黄洪林 罗鸣 马传华 吴艳辉 李军

张更,李文拓,黄洪林,等. 考虑盐浓度的天然气水合物三维相平衡曲面热力学预测模型[J]. 钻井液与完井液,2025,42(1):90-101 doi: 10.12358/j.issn.1001-5620.2025.01.010
引用本文: 张更,李文拓,黄洪林,等. 考虑盐浓度的天然气水合物三维相平衡曲面热力学预测模型[J]. 钻井液与完井液,2025,42(1):90-101 doi: 10.12358/j.issn.1001-5620.2025.01.010
ZHANG Geng, LI Wentuo, HUANG Honglin, et al.A thermodynamic model for predicting 3D phase equilibrium surface of natural gas hydrates considering salt concentration[J]. Drilling Fluid & Completion Fluid,2025, 42(1):90-101 doi: 10.12358/j.issn.1001-5620.2025.01.010
Citation: ZHANG Geng, LI Wentuo, HUANG Honglin, et al.A thermodynamic model for predicting 3D phase equilibrium surface of natural gas hydrates considering salt concentration[J]. Drilling Fluid & Completion Fluid,2025, 42(1):90-101 doi: 10.12358/j.issn.1001-5620.2025.01.010

考虑盐浓度的天然气水合物三维相平衡曲面热力学预测模型

doi: 10.12358/j.issn.1001-5620.2025.01.010
基金项目: 国家自然科学基金青年科学基金项目“超深水超浅层气钻井溢流井下智能识别与井筒压力控制方法”(52104012);中国博士后科学基金资助项目“超深水超浅层气钻井地层-井筒耦合多相流动机理与溢流风险防控”(2024M753615);国家资助博士后研究人员计划 “特超深井井筒多相流动机理与井下风险调控方法”(GZC20233105);中国石油大学(北京)科研基金资助“超深油气井溢流早期智能监测与定量反演方法”(2462024XKBH006)。
详细信息
    作者简介:

    张更,博士后,1996年生,主要从事水合物防治、井筒多相流方面研究。E-mail:zhanggeng_96@163.com

    通讯作者:

    黄洪林,钻井工程师,1994年生,主要从事海洋复杂油气钻井方面研究。E-mail:huanghl_cup@163.com

  • 中图分类号: TE311

A Thermodynamic Model for Predicting 3D Phase Equilibrium Surface of Natural Gas Hydrates Considering Salt Concentration

  • 摘要: 准确预测含盐体系中天然气水合物的热力学稳定性,对预测水合物成藏范围、确定水合物分解域等具有重要意义。因此,综合考虑水合物晶穴非球形特征和含盐体系中电解质相互作用,建立考虑盐浓度的天然气水合物相平衡热力学模型,并与实验数据进行对比验证。研究结果表明,建立的三维相平衡曲面能有效预测天然气水合物热力学稳定性,纯水条件下的温度绝对平均相对偏差仅为0.08,且含盐条件下不超过0.15。在氯盐摩尔分数大于0.02、压力高于20 MPa时,化学因素导致p-T曲线发生平移。在压力较小时,平衡温度沿盐浓度方向的梯度剧烈变化,p-T曲线不再具有平移特性。同时,摩尔分数相同时,AlCl3比其他氯盐对CH4水合物的抑制作用更强。CH4水合物的lnp-X-1/T三维曲面局部表现出较好的Clausius-Clapeyron线性行为,曲面整体具有非线性特征,且氯盐电解质对CH4水合物的抑制效果越好,非线性特征越强。

     

  • 图  1  模型求解流程图

    图  2  纯水条件下CH4水合物相平衡预测结果对比

    图  3  在单一电解质溶液中CH4水合物相平衡温度预测曲面

    图  4  混合溶液中CH4水合物相平衡温度预测值

    图  5  不同盐浓度下CH4水合物相平衡p-T曲线

    图  6  CH4水合物相平衡温度梯度云图

    图  7  不同电解质下CH4水合物相平衡p-T曲线

    图  8  不同电解质溶液下lnp-X-1/T曲面线性区域

    图  9  不同电解质下Clausius-Clapeyron线性特性

    表  1  气体的Kihara势能参数

    气体类型 a $ \sigma $ /Å $ \epsilon /k $ /Å
    CH4 0.3834 3.1650 154.54
    C2H6 0.6760 3.1383 190.80
    C3H8 0.8340 3.1440 194.55
    N2 0.5290 0.2569 150.03
    H2S 0.4920 3.1774 198.53
    CO2 0.1773 2.9605 170.97
    下载: 导出CSV

    表  2  水合物分子几何参数[22]

    水合物
    结构
    腔型 分子核
    间距/Å
    腔体/
    单元壳
    配位数 H2O分子/
    单元壳
    I 512 3.95 2 20 46
    51262 4.33 6 24
    II 512 3.91 16 20 136
    51264 4.73 8 28
    下载: 导出CSV

    表  3  三层球模型相关参数

    结构及腔体类型第一层第二层第三层$ {n}_{0} $$ {a}_{0} $
    $ {R}_{c} $/Åz$ {R}_{c} $/Åz$ {R}_{c} $/Åz
    I小腔体3.875206.593208.056500.97335.345
    大腔体4.152217.078248.255500.82814.116
    II小腔体3.870206.697208.079200.97335.335
    大腔体4.703267.464288.782502.313782.847
    下载: 导出CSV

    表  4  水合物热力学参数

    参数 I型结构 II型结构
    $ \mathrm{\Delta }{\mu }_{W}^{0} $ /(J/mol) 1120 931
    $ \mathrm{\Delta }{h}_{W}^{0} $ /(J/mol) 1714 (TT0 1400(TT0
    −4297(TT0 −4611(TT0
    $ \mathrm{\Delta }{V}_{W} $ /(mL/mol) 2.9959 (TT0 3.396 44(TT0
    4.5959(TT0 4.996 44(TT0
    $ \mathrm{\Delta }{C}_{pW} $ /(J/mol·K) $ 3.315+0.012(T-{T}_{0}) $(TT0 $ 1.029+0.004(T-{T}_{0}) $(TT0
    $ -34.583+0.189(T-{T}_{0}) $ (TT0 $ -36.861+0.181(T-{T}_{0}) $ (TT0
    下载: 导出CSV

    表  5  表征电解质之间相互作用的优化参数

    溶液类型 n1 n2 /K−1 n3/(1/摩尔分数)
    NaCl+LiCl 0.813 6.552e-4 8.725e-3
    NaCl+KCl 0.676 2.263e-4 4.962e-3
    NaCl+MgCl2 0.729 7.607e-4 6.569e-3
    NaCl+CaCl2 0.557 2.673e-4 3.230e-3
    NaCl+AlCl3 0.842 5.362e-4 4.236e-3
    下载: 导出CSV

    表  6  电解质二元优化参数

    溶液类型$ {\zeta }_{elw} $$ {\zeta }_{wel} $
    LiCl11.5096.375
    NaCl6.3594.277
    KCl9.620−10.496
    MgCl210.629−3.264
    CaCl29.2594.595
    AlCl318.397−5.567
    下载: 导出CSV

    表  7  BWRS状态方程相关参数

    参数下标j参数值
    AjBj
    10.443 6900.115 449
    21.284 380−0.920 731
    30.356 3061.708 710
    40.544 979−0.270 896
    50.528 6290.349 621
    60.484 0110.754 130
    70.070 523−0.044 448
    80.504 0871.322 450
    90.030 7450.179 433
    100.073 2830.463 492
    110.006 450−0.022 143
    下载: 导出CSV

    表  8  气体的临界参数

    气体类型Tc/Kpc/MPaρc/(kmol·m−3ω
    N2126.153.39411.09900.0350
    CO2304.097.37610.63800.2100
    H2O647.3022.04817.85700.3440
    CH4190.694.60410.05000.0130
    C2H6305.384.8806.75660.1018
    C3H8369.894.2504.99940.1570
    下载: 导出CSV

    表  9  电解质溶液中CH4水合物相平衡预测结果

    液体类型 浓度范围 T/K P/MPa AARD-T /% N
    Haghighi Hsieh Li Chin 本文
    纯水 273.30~303.48 2.680~72.260 0.68 0.20 0.13 0.35 0.08 250
    LiCl 0.050~0.200 (wt) 260.17~288.81 3.506~22.155 0.22 0.42 0.16 0.23 0.15 17
    NaCl 0.040~0.090 (me) 261.85~278.05 2.390~11.000 0.26 0.36 0.15 0.30 0.13 23
    KCl 0.050~0.100 (wt) 269.16~283.20 1.830~8.820 0.34 0.16 0.12 0.28 0.06 17
    MgCl2 0.030~0.150 (wt) 270.75~286.40 2.820~12.955 0.09 0.16 0.15 0.13 0.09 22
    CaCl2 0.008~0.053 (me) 260.00~284.40 4.920~10.290 0.25 0.17 0.20 0.62 0.10 26
    AlCl3 0.090~0.150 (wt) 272.15~278.15 4.040~8.380 0.21 0.26 0.24 0.34 0.03 8
    NaCl+KCl 0.030~0.150 (wt) 263.58~281.46 2.569~9.379 0.11 0.09 0.26 0.52 0.04 37
    NaCl+CaCl2 0.030~0.100 (wt) 266.02~281.76 2.504~9.664 0.13 0.06 0.17 0.83 0.06 24
      注:wt为质量分数,me为摩尔分数。
    下载: 导出CSV
  • [1] 刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质,2021,41(5):44-57.

    LIU Changling, SUN Yunbao. Characteristics of Marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5):44-57.
    [2] 庞雄奇, 胡涛, 蒲庭玉, 等. 中国南海天然气水合物资源产业化发展面临的风险与挑战[J]. 石油学报,2024,45(7):1044-1060. doi: 10.7623/syxb202407002

    PANG Xiongqi, HU Tao, PU Tingyu, et al. Risks and challenges of the industrial development of methane hydrate resources in the South China Sea[J]. Acta Petrolei Sinica, 2024, 45(7):1044-1060. doi: 10.7623/syxb202407002
    [3] 于倩男, 唐慧敏, 李承龙, 等. 天然气水合物注热分解渗流特征及数值模拟[J]. 东北石油大学学报,2023,47(6):38-54. doi: 10.3969/j.issn.2095-4107.2023.06.004

    YU Qiannan, TANG Huimin, LI Chenglong, et al. Numerical simulation of seepage flow and decomposition characteristics of natural gas hydrate in process of heat injection production[J]. Journal of Northeast Petroleum University, 2023, 47(6):38-54. doi: 10.3969/j.issn.2095-4107.2023.06.004
    [4] 邵亚洲. 多孔介质中天然气水合物降压分解实验与数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.

    SHAO Yazhou. Experimental and numerical research ondissociation characteristics of natural gashydrate by depressurization in porous media[D]. Harbin: Harbin Engineering University, 2022.
    [5] 陈兵兵. 多孔介质内水合物相变与流体运移相互作用机制研究[D]. 大连: 大连理工大学, 2021.

    CHEN Bingbing. Study on interaction mechanism between fluid migration and hydrate phase transition in porous media[D]. Dalian: Dalian University of Technology, 2021.
    [6] 王俊杰, 蒋彬, 廖玉宏, 等. 南海琼东南盆地两种不同成因天然气水合物赋存的深层沉积物地球化学特征对比[J]. 地球化学,2023,52(2):180-190.

    WANG Junjie, JIANG Bin, LIAO Yuhong, et al. Comparison of geochemical characteristics of natural gas hydrate-related sediments in Qiongdongnan Basin, South China Sea[J]. Geochimica, 2023, 52(2):180-190.
    [7] 李明川, 樊栓狮, 徐赋海, 等. 天然气水合物热分解Stefan相变数学模拟研究[J]. 化工学报,2021,72(6):3252-3260.

    LI Mingchuan, FAN Shuanshi, XU Fuhai, et al. Mathematical modeling of Stefan phase change for thermal dissociation of natural gas hydrate[J]. CIESC Journal, 2021, 72(6):3252-3260.
    [8] 吴艳辉, 代锐, 张磊, 等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415-422. doi: 10.12358/j.issn.1001-5620.2023.04.001

    WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):415-422. doi: 10.12358/j.issn.1001-5620.2023.04.001
    [9] 任冠龙, 孟文波, 何玉发, 等. 深水浅层钻井液水合物抑制性能优化[J]. 钻井液与完井液,2022,39(5):529-537. doi: 10.12358/j.issn.1001-5620.2022.05.001

    REN Guanlong, MENG Wenbo, HE Yufa, et al. Optimization of hydrate inhibition performance of deep water shallow drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):529-537. doi: 10.12358/j.issn.1001-5620.2022.05.001
    [10] 张更. 海洋浅表层天然气水合物固态流化开采井筒多相流动规律研究[D]. 北京: 中国石油大学(北京), 2023.

    ZHANG Geng. Research on the wellbore multiphase flow rules during natural gas hydrate solid fluidization exploitation in offshore shallow surface[D]. Beijing: China University of Petroleum(Beijing), 2023.
    [11] JAVANMARDI J, MOSHFEGHIAN M, MADDOX N R. An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol[J]. The Canadian Journal of Chemical Engineering, 2001, 79(3):367-373. doi: 10.1002/cjce.5450790309
    [12] MOHAMMADI H A, ANDERSON R, TOHIDI B. Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling[J]. AIChE Journal, 2005, 51(10):2825-2833. doi: 10.1002/aic.10526
    [13] MOHAMMADI A H, TOHIDI B. Prediction of hydrate phase equilibria in aqueous solutions of salt and organic inhibitor using a combined equation of state and activity coefficient‐based model[J]. The Canadian Journal of Chemical Engineering, 2005, 83(5):865-871.
    [14] BANDYOPADHYAY A A, KLAUDA J B. Gas hydrate structure and pressure predictions based on an updated Fugacity-Based model with the PSRK equation of state[J]. Industrial & Engineering Chemistry Research, 2011, 50(1):148-157.
    [15] HAGHIGHI H, CHAPOY A, TOHIDI B. Methane and water phase equilibria in the presence of single and mixed electrolyte solutions using the Cubic-Plus-Association equation of state[J]. Oil & Gas Science and Technology, 2009, 64(2):141-154.
    [16] HSIEH M K, YEH Y T, CHEN Y P, et al. Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes[J]. Industrial & Engineering Chemistry Research Journal, 2012, 51(5):2456-2469.
    [17] MA Q L, CHEN G J, GUO T M. Modelling the gas hydrate formation of inhibitor containing systems[J]. Fluid Phase Equilibria, 2003, 205(2):291-302. doi: 10.1016/S0378-3812(02)00295-9
    [18] LI S G, LI Y J, WANG J Q, et al. Prediction of gas hydrate formation conditions in the presence of electrolytes using an N-NRTL-NRF activity coefficient model[J]. Industrial & Engineering Chemistry Research, 2020, 59(13):6269-6278.
    [19] Parrish W, PARRISH J. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Research, 1972, 11(1):26-35.
    [20] JOHN V T, PAPADOPOULOS K D, HOLDER G D. A generalized model for predicting equilibrium conditions for gas hydrates[J]. AIChE Journal, 2010, 31(2):252-259.
    [21] MCKOY V, SINANOĞLU O. Theory of dissociation pressures of some gas hydrates[J]. The Journal of Chemical Physics, 1963, 38(12):2946-2956. doi: 10.1063/1.1733625
    [22] MEHTA A P, SLOAN E D. Improved thermodynamic parameters for prediction of structure H hydrate equilibria[J]. AIChE Journal, 1996, 42(7):2036-2046. doi: 10.1002/aic.690420724
    [23] SAITO S, MARSHALL D R, KOBAYASHI R. Hydrates at high pressures: Part II. Application of statistical mechanics to the study of the hydrates of methane, argon, and nitrogen[J]. AIChE Journal, 1964, 10(5):734-740. doi: 10.1002/aic.690100530
    [24] HOLDER G D, CORBIN G, PAPADOPOULOS K D. Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3):282-286.
    [25] NASRIFAR K, MOSHFEGHIAN M. A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol[J]. The Journal of Chemical Thermodynamics, 2001, 33(9):999-1014. doi: 10.1006/jcht.2000.0811
    [26] HSIEH C M, SANDLER S I, LIN S T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1):90-97. doi: 10.1016/j.fluid.2010.06.011
    [27] HAGHTALAB A, SHOJAEIAN A, MAZLOUMI S H. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions[J]. The Journal of Chemical Thermodynamics, 2011, 43(3):354-363. doi: 10.1016/j.jct.2010.10.004
    [28] BÖTTGER A, KAMPS Á P S, MAURER G. An experimental investigation of the phase equilibrium of the binary system (methane plus water) at low temperatures: solubility of methane in water and three-phase (vapour plus liquid plus hydrate) equilibrium[J]. Fluid Phase Equilibria, 2016, 407:209-216. doi: 10.1016/j.fluid.2015.03.041
    [29] MAEKAWA T. Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions[J]. Fluid Phase Equilibria, 2008, 267(1):1-5. doi: 10.1016/j.fluid.2008.02.006
    [30] 孙始财, 刘昌岭, 业渝光, 等. 氯盐溶液中甲烷水合物高压分解条件及影响因素[J]. 物理化学学报,2011,27(12):2773-2778. doi: 10.3866/PKU.WHXB20112773

    SUN Shicai, LIU Changling, YE Yuguang, et al. Dissociation conditions and influencing factors of methane hydrate in chloride salt solution under high pressure[J]. Acta Physico-Chimica Sinica, 2011, 27(12):2773-2778. doi: 10.3866/PKU.WHXB20112773
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  66
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-02
  • 修回日期:  2024-10-30
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回