A Thermodynamic Model for Predicting 3D Phase Equilibrium Surface of Natural Gas Hydrates Considering Salt Concentration
-
摘要: 准确预测含盐体系中天然气水合物的热力学稳定性,对预测水合物成藏范围、确定水合物分解域等具有重要意义。因此,综合考虑水合物晶穴非球形特征和含盐体系中电解质相互作用,建立考虑盐浓度的天然气水合物相平衡热力学模型,并与实验数据进行对比验证。研究结果表明,建立的三维相平衡曲面能有效预测天然气水合物热力学稳定性,纯水条件下的温度绝对平均相对偏差仅为0.08,且含盐条件下不超过0.15。在氯盐摩尔分数大于0.02、压力高于20 MPa时,化学因素导致p-T曲线发生平移。在压力较小时,平衡温度沿盐浓度方向的梯度剧烈变化,p-T曲线不再具有平移特性。同时,摩尔分数相同时,AlCl3比其他氯盐对CH4水合物的抑制作用更强。CH4水合物的lnp-X-1/T三维曲面局部表现出较好的Clausius-Clapeyron线性行为,曲面整体具有非线性特征,且氯盐电解质对CH4水合物的抑制效果越好,非线性特征越强。
-
关键词:
- 天然气水合物 /
- 热力学模型 /
- 相平衡 /
- Clausius-Clapeyron线性特征
Abstract: Accurate prediction of the thermodynamic stability of gas hydrates in salt-bearing systems is of great significance for predicting the accumulation range and determining the decomposition domain of hydrate. Therefore, considering the non-spherical characteristics of hydrate crystal cavity and the electrolyte interaction in the salt-containing system, a thermodynamic model of gas hydrate phase equilibrium considering salt concentration was established, and compared with the experimental data. The results show that the established three-dimensional phase equilibrium surface can effectively predict the thermodynamic stability of NGH, and the absolute mean relative deviation of temperature is only 0.08 in pure water, and no more than 0.15 in salt. When the molar fraction of chloride is greater than 0.02 and the pressure is higher than 20 MPa, the chemical factors cause the p-T curve to shift. When the pressure is small, the equilibrium temperature changes dramatically along the gradient of salt concentration, and the p-T curve no longer has translation characteristics. At the same time, AlCl3 has stronger inhibitory effect on CH4 hydrate than other chlorine salts when the molar fraction is the same. The lnp-X-1/T three-dimensional surface of CH4 hydrate exhibits better Clausius-Clapeyron linear behavior locally, and the surface as a whole has certain nonlinear characteristics. Moreover, the better the inhibition effect of chloride electrolyte on CH4 hydrate, the stronger the nonlinear characteristics. -
表 1 气体的Kihara势能参数
气体类型 a /Å $ \sigma $ /Å $ \epsilon /k $ /Å CH4 0.3834 3.1650 154.54 C2H6 0.6760 3.1383 190.80 C3H8 0.8340 3.1440 194.55 N2 0.5290 0.2569 150.03 H2S 0.4920 3.1774 198.53 CO2 0.1773 2.9605 170.97 表 2 水合物分子几何参数[22]
水合物
结构腔型 分子核
间距/Å腔体/
单元壳配位数 H2O分子/
单元壳I 512 3.95 2 20 46 51262 4.33 6 24 II 512 3.91 16 20 136 51264 4.73 8 28 表 3 三层球模型相关参数
结构及腔体类型 第一层 第二层 第三层 $ {n}_{0} $ $ {a}_{0} $ $ {R}_{c} $/Å z $ {R}_{c} $/Å z $ {R}_{c} $/Å z I 小腔体 3.875 20 6.593 20 8.056 50 0.973 35.345 大腔体 4.152 21 7.078 24 8.255 50 0.828 14.116 II 小腔体 3.870 20 6.697 20 8.079 20 0.973 35.335 大腔体 4.703 26 7.464 28 8.782 50 2.313 782.847 表 4 水合物热力学参数
参数 I型结构 II型结构 $ \mathrm{\Delta }{\mu }_{W}^{0} $ /(J/mol) 1120 931 $ \mathrm{\Delta }{h}_{W}^{0} $ /(J/mol) 1714 (T<T0) 1400(T<T0) −4297(T>T0) −4611(T>T0) $ \mathrm{\Delta }{V}_{W} $ /(mL/mol) 2.9959 (T<T0) 3.396 44(T<T0) 4.5959(T>T0) 4.996 44(T>T0) $ \mathrm{\Delta }{C}_{pW} $ /(J/mol·K) $ 3.315+0.012(T-{T}_{0}) $(T<T0) $ 1.029+0.004(T-{T}_{0}) $(T<T0) $ -34.583+0.189(T-{T}_{0}) $ (T>T0) $ -36.861+0.181(T-{T}_{0}) $ (T>T0) 表 5 表征电解质之间相互作用的优化参数
溶液类型 n1 n2 /K−1 n3/(1/摩尔分数) NaCl+LiCl 0.813 6.552e-4 8.725e-3 NaCl+KCl 0.676 2.263e-4 4.962e-3 NaCl+MgCl2 0.729 7.607e-4 6.569e-3 NaCl+CaCl2 0.557 2.673e-4 3.230e-3 NaCl+AlCl3 0.842 5.362e-4 4.236e-3 表 6 电解质二元优化参数
溶液类型 $ {\zeta }_{elw} $ $ {\zeta }_{wel} $ LiCl 11.509 6.375 NaCl 6.359 4.277 KCl 9.620 −10.496 MgCl2 10.629 −3.264 CaCl2 9.259 4.595 AlCl3 18.397 −5.567 表 7 BWRS状态方程相关参数
参数下标j 参数值 Aj Bj 1 0.443 690 0.115 449 2 1.284 380 −0.920 731 3 0.356 306 1.708 710 4 0.544 979 −0.270 896 5 0.528 629 0.349 621 6 0.484 011 0.754 130 7 0.070 523 −0.044 448 8 0.504 087 1.322 450 9 0.030 745 0.179 433 10 0.073 283 0.463 492 11 0.006 450 −0.022 143 表 8 气体的临界参数
气体类型 Tc/K pc/MPa ρc/(kmol·m−3) ω N2 126.15 3.394 11.0990 0.0350 CO2 304.09 7.376 10.6380 0.2100 H2O 647.30 22.048 17.8570 0.3440 CH4 190.69 4.604 10.0500 0.0130 C2H6 305.38 4.880 6.7566 0.1018 C3H8 369.89 4.250 4.9994 0.1570 表 9 电解质溶液中CH4水合物相平衡预测结果
液体类型 浓度范围 T/K P/MPa AARD-T /% N Haghighi Hsieh Li Chin 本文 纯水 273.30~303.48 2.680~72.260 0.68 0.20 0.13 0.35 0.08 250 LiCl 0.050~0.200 (wt) 260.17~288.81 3.506~22.155 0.22 0.42 0.16 0.23 0.15 17 NaCl 0.040~0.090 (me) 261.85~278.05 2.390~11.000 0.26 0.36 0.15 0.30 0.13 23 KCl 0.050~0.100 (wt) 269.16~283.20 1.830~8.820 0.34 0.16 0.12 0.28 0.06 17 MgCl2 0.030~0.150 (wt) 270.75~286.40 2.820~12.955 0.09 0.16 0.15 0.13 0.09 22 CaCl2 0.008~0.053 (me) 260.00~284.40 4.920~10.290 0.25 0.17 0.20 0.62 0.10 26 AlCl3 0.090~0.150 (wt) 272.15~278.15 4.040~8.380 0.21 0.26 0.24 0.34 0.03 8 NaCl+KCl 0.030~0.150 (wt) 263.58~281.46 2.569~9.379 0.11 0.09 0.26 0.52 0.04 37 NaCl+CaCl2 0.030~0.100 (wt) 266.02~281.76 2.504~9.664 0.13 0.06 0.17 0.83 0.06 24 注:wt为质量分数,me为摩尔分数。 -
[1] 刘昌岭, 孙运宝. 海洋天然气水合物储层特性及其资源量评价方法[J]. 海洋地质与第四纪地质,2021,41(5):44-57.LIU Changling, SUN Yunbao. Characteristics of Marine gas hydrate reservoir and its resource evaluation methods[J]. Marine Geology & Quaternary Geology, 2021, 41(5):44-57. [2] 庞雄奇, 胡涛, 蒲庭玉, 等. 中国南海天然气水合物资源产业化发展面临的风险与挑战[J]. 石油学报,2024,45(7):1044-1060. doi: 10.7623/syxb202407002PANG Xiongqi, HU Tao, PU Tingyu, et al. Risks and challenges of the industrial development of methane hydrate resources in the South China Sea[J]. Acta Petrolei Sinica, 2024, 45(7):1044-1060. doi: 10.7623/syxb202407002 [3] 于倩男, 唐慧敏, 李承龙, 等. 天然气水合物注热分解渗流特征及数值模拟[J]. 东北石油大学学报,2023,47(6):38-54. doi: 10.3969/j.issn.2095-4107.2023.06.004YU Qiannan, TANG Huimin, LI Chenglong, et al. Numerical simulation of seepage flow and decomposition characteristics of natural gas hydrate in process of heat injection production[J]. Journal of Northeast Petroleum University, 2023, 47(6):38-54. doi: 10.3969/j.issn.2095-4107.2023.06.004 [4] 邵亚洲. 多孔介质中天然气水合物降压分解实验与数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.SHAO Yazhou. Experimental and numerical research ondissociation characteristics of natural gashydrate by depressurization in porous media[D]. Harbin: Harbin Engineering University, 2022. [5] 陈兵兵. 多孔介质内水合物相变与流体运移相互作用机制研究[D]. 大连: 大连理工大学, 2021.CHEN Bingbing. Study on interaction mechanism between fluid migration and hydrate phase transition in porous media[D]. Dalian: Dalian University of Technology, 2021. [6] 王俊杰, 蒋彬, 廖玉宏, 等. 南海琼东南盆地两种不同成因天然气水合物赋存的深层沉积物地球化学特征对比[J]. 地球化学,2023,52(2):180-190.WANG Junjie, JIANG Bin, LIAO Yuhong, et al. Comparison of geochemical characteristics of natural gas hydrate-related sediments in Qiongdongnan Basin, South China Sea[J]. Geochimica, 2023, 52(2):180-190. [7] 李明川, 樊栓狮, 徐赋海, 等. 天然气水合物热分解Stefan相变数学模拟研究[J]. 化工学报,2021,72(6):3252-3260.LI Mingchuan, FAN Shuanshi, XU Fuhai, et al. Mathematical modeling of Stefan phase change for thermal dissociation of natural gas hydrate[J]. CIESC Journal, 2021, 72(6):3252-3260. [8] 吴艳辉, 代锐, 张磊, 等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415-422. doi: 10.12358/j.issn.1001-5620.2023.04.001WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):415-422. doi: 10.12358/j.issn.1001-5620.2023.04.001 [9] 任冠龙, 孟文波, 何玉发, 等. 深水浅层钻井液水合物抑制性能优化[J]. 钻井液与完井液,2022,39(5):529-537. doi: 10.12358/j.issn.1001-5620.2022.05.001REN Guanlong, MENG Wenbo, HE Yufa, et al. Optimization of hydrate inhibition performance of deep water shallow drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):529-537. doi: 10.12358/j.issn.1001-5620.2022.05.001 [10] 张更. 海洋浅表层天然气水合物固态流化开采井筒多相流动规律研究[D]. 北京: 中国石油大学(北京), 2023.ZHANG Geng. Research on the wellbore multiphase flow rules during natural gas hydrate solid fluidization exploitation in offshore shallow surface[D]. Beijing: China University of Petroleum(Beijing), 2023. [11] JAVANMARDI J, MOSHFEGHIAN M, MADDOX N R. An accurate model for prediction of gas hydrate formation conditions in mixtures of aqueous electrolyte solutions and alcohol[J]. The Canadian Journal of Chemical Engineering, 2001, 79(3):367-373. doi: 10.1002/cjce.5450790309 [12] MOHAMMADI H A, ANDERSON R, TOHIDI B. Carbon monoxide clathrate hydrates: Equilibrium data and thermodynamic modeling[J]. AIChE Journal, 2005, 51(10):2825-2833. doi: 10.1002/aic.10526 [13] MOHAMMADI A H, TOHIDI B. Prediction of hydrate phase equilibria in aqueous solutions of salt and organic inhibitor using a combined equation of state and activity coefficient‐based model[J]. The Canadian Journal of Chemical Engineering, 2005, 83(5):865-871. [14] BANDYOPADHYAY A A, KLAUDA J B. Gas hydrate structure and pressure predictions based on an updated Fugacity-Based model with the PSRK equation of state[J]. Industrial & Engineering Chemistry Research, 2011, 50(1):148-157. [15] HAGHIGHI H, CHAPOY A, TOHIDI B. Methane and water phase equilibria in the presence of single and mixed electrolyte solutions using the Cubic-Plus-Association equation of state[J]. Oil & Gas Science and Technology, 2009, 64(2):141-154. [16] HSIEH M K, YEH Y T, CHEN Y P, et al. Predictive method for the change in equilibrium conditions of gas hydrates with addition of inhibitors and electrolytes[J]. Industrial & Engineering Chemistry Research Journal, 2012, 51(5):2456-2469. [17] MA Q L, CHEN G J, GUO T M. Modelling the gas hydrate formation of inhibitor containing systems[J]. Fluid Phase Equilibria, 2003, 205(2):291-302. doi: 10.1016/S0378-3812(02)00295-9 [18] LI S G, LI Y J, WANG J Q, et al. Prediction of gas hydrate formation conditions in the presence of electrolytes using an N-NRTL-NRF activity coefficient model[J]. Industrial & Engineering Chemistry Research, 2020, 59(13):6269-6278. [19] Parrish W, PARRISH J. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Research, 1972, 11(1):26-35. [20] JOHN V T, PAPADOPOULOS K D, HOLDER G D. A generalized model for predicting equilibrium conditions for gas hydrates[J]. AIChE Journal, 2010, 31(2):252-259. [21] MCKOY V, SINANOĞLU O. Theory of dissociation pressures of some gas hydrates[J]. The Journal of Chemical Physics, 1963, 38(12):2946-2956. doi: 10.1063/1.1733625 [22] MEHTA A P, SLOAN E D. Improved thermodynamic parameters for prediction of structure H hydrate equilibria[J]. AIChE Journal, 1996, 42(7):2036-2046. doi: 10.1002/aic.690420724 [23] SAITO S, MARSHALL D R, KOBAYASHI R. Hydrates at high pressures: Part II. Application of statistical mechanics to the study of the hydrates of methane, argon, and nitrogen[J]. AIChE Journal, 1964, 10(5):734-740. doi: 10.1002/aic.690100530 [24] HOLDER G D, CORBIN G, PAPADOPOULOS K D. Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton[J]. Industrial & Engineering Chemistry Fundamentals, 1980, 19(3):282-286. [25] NASRIFAR K, MOSHFEGHIAN M. A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol[J]. The Journal of Chemical Thermodynamics, 2001, 33(9):999-1014. doi: 10.1006/jcht.2000.0811 [26] HSIEH C M, SANDLER S I, LIN S T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions[J]. Fluid Phase Equilibria, 2010, 297(1):90-97. doi: 10.1016/j.fluid.2010.06.011 [27] HAGHTALAB A, SHOJAEIAN A, MAZLOUMI S H. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions[J]. The Journal of Chemical Thermodynamics, 2011, 43(3):354-363. doi: 10.1016/j.jct.2010.10.004 [28] BÖTTGER A, KAMPS Á P S, MAURER G. An experimental investigation of the phase equilibrium of the binary system (methane plus water) at low temperatures: solubility of methane in water and three-phase (vapour plus liquid plus hydrate) equilibrium[J]. Fluid Phase Equilibria, 2016, 407:209-216. doi: 10.1016/j.fluid.2015.03.041 [29] MAEKAWA T. Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions[J]. Fluid Phase Equilibria, 2008, 267(1):1-5. doi: 10.1016/j.fluid.2008.02.006 [30] 孙始财, 刘昌岭, 业渝光, 等. 氯盐溶液中甲烷水合物高压分解条件及影响因素[J]. 物理化学学报,2011,27(12):2773-2778. doi: 10.3866/PKU.WHXB20112773SUN Shicai, LIU Changling, YE Yuguang, et al. Dissociation conditions and influencing factors of methane hydrate in chloride salt solution under high pressure[J]. Acta Physico-Chimica Sinica, 2011, 27(12):2773-2778. doi: 10.3866/PKU.WHXB20112773 -