留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液用可降解聚合物暂堵剂的研制

田智元 齐舵 王海波 张馨鹏 郭宝华 徐军

田智元,齐舵,王海波,等. 钻井液用可降解聚合物暂堵剂的研制[J]. 钻井液与完井液,2025,42(1):74-81 doi: 10.12358/j.issn.1001-5620.2025.01.008
引用本文: 田智元,齐舵,王海波,等. 钻井液用可降解聚合物暂堵剂的研制[J]. 钻井液与完井液,2025,42(1):74-81 doi: 10.12358/j.issn.1001-5620.2025.01.008
TIAN Zhiyuan, QI Duo, WANG Haibo, et al.Development of a biodegradable polymer temporary plugging agent for drilling fluid[J]. Drilling Fluid & Completion Fluid,2025, 42(1):74-81 doi: 10.12358/j.issn.1001-5620.2025.01.008
Citation: TIAN Zhiyuan, QI Duo, WANG Haibo, et al.Development of a biodegradable polymer temporary plugging agent for drilling fluid[J]. Drilling Fluid & Completion Fluid,2025, 42(1):74-81 doi: 10.12358/j.issn.1001-5620.2025.01.008

钻井液用可降解聚合物暂堵剂的研制

doi: 10.12358/j.issn.1001-5620.2025.01.008
基金项目: 中国石化石油工程技术研究院与清华大学化工系联合研发项目“可降解封堵材料研究”(GCY/JL B12-52)。
详细信息
    作者简介:

    田智元,在读硕士研究生,现在主要从事可降解封堵材料的研究。E-mail:362780782@qq.com

    通讯作者:

    徐军,E-mail:jun-xu@mail.tsinghua.edu.cn

  • 中图分类号: TE258

Development of a Biodegradable Polymer Temporary Plugging Agent for Drilling Fluid

  • 摘要: 生物可降解聚酯类暂堵剂的降解性较好,对储层伤害较小,但是具有耐温性不足、封堵强度较小、生产成本较高等问题,导致其目前难以广泛应用。为了满足更高温度条件下暂堵剂的需求,采用水解速率更慢的聚对苯二甲酸丁二酯(PBT)和聚酰胺6(PA6)熔融共混,并加入环氧扩链剂ADR提高共混物的相容性,制备出耐温性能较好、封堵强度较高,并且降解速率可调控的可降解暂堵剂。实验结果表明,制备出的暂堵剂具有较好的降解性能,暂堵剂在120~150℃钻井液条件下(pH=10的NaOH水溶液)降解20~60 d后的失重率均大于80%;当共混比例为70%PBT/30%PA6,并加入1.5%ADR时,暂堵剂的抗压强度可达91 MPa、150℃降解16 h后仍大于70 MPa;与钻井液的配伍性较好,并且封堵性能优良,120℃降解14 d后仍然具有2 MPa的封堵强度。

     

  • 图  1  原料及暂堵剂在120℃、150℃下的水解失重曲线

    图  2  不同暂堵剂的时间-失重图

    图  3  暂堵剂水解前后断面的SEM电镜图

    图  4  不同样品水解前后压缩强度

    图  5  堵漏模拟装置

    表  1  在自制无固相实验浆中加入暂堵剂颗粒(100目)前后的配伍性

    暂堵
    剂/%
    实验
    条件
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    FLHTHP/
    mL
    极压润
    滑系数
    0 热滚前 19 13.0 0.684
    2 热滚前 19 15.5 0.815
    120℃、16 h 20 12.0 0.600 18 0.2137
     注:FLHTHP在120℃测定。
    下载: 导出CSV
  • [1] 王纪伟, 康玉柱, 张殿伟, 等. 非常规储层压裂暂堵剂应用进展[J]. 特种油气藏,2021,28(5):1-9.

    WANG Jiwei, KANG Yuzhu, ZHANG Dianwei, et al. Advances in the application of temporary plugging agents for fracturing in unconventional reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(5):1-9.
    [2] 孙龙德, 赵文智, 刘合, 等. 页岩油“甜点”概念及其应用讨论[J]. 石油学报,2023,44(1):1-13. doi: 10.7623/syxb202301001

    SUN Longde, ZHAO Wenzhi, LIU He, et al. Concept and application of "sweet spot" in shale oil[J]. Acta Petrolei Sinica, 2023, 44(1):1-13. doi: 10.7623/syxb202301001
    [3] 尚建龙. 石油化工储运的现状分析及发展方向[J]. 石化技术,2022,29(9):241-242.

    SHANG Jianlong. Analysis of the current situation and development direction of petrochemical storage and transportation[J]. Petrochemical Industry Technology, 2022, 29(9):241-242.
    [4] 何明舫, 张燕明, 赵振峰, 等. 暂堵剂的研究进展[J]. 化工时刊,2022,36(6):29-33.

    HE Mingfang, ZHANG Yanming, ZHAO Zhenfeng, et al. Research progress of temporary plugging agent[J]. Chemical Industry Times, 2022, 36(6):29-33.
    [5] 赵洪波, 单文军, 朱迪斯, 等. 裂缝性地层漏失机理及堵漏材料新进展[J]. 油田化学,2021,38(4):740-746.

    ZHAO Hongbo, SHAN Wenjun, ZHU Disi, et al. Advance of fractured formation lost circulation mechanism and lost circulation materials in oil and gas wells[J]. Oilfield Chemistry, 2021, 38(4):740-746.
    [6] 许可, 高航, 石阳, 等. 储层改造用暂堵材料研究进展[J]. 应用化工,2022,51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043

    XU Ke, GAO Hang, SHI Yang, et al. Research progress of temporary plugging materials for reservoir stimulation[J]. Applied Chemical Industry, 2022, 51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043
    [7] 许伟星, 王玉功, 周宾宾. 自降解水溶性暂堵剂的研究及应用[J]. 油田化学,2022,39(1):59-63.

    XU Weixing, WANG Yugong, ZHOU Binbin. Research and application of self-degrading water-soluble temporary plugging agent[J]. Oilfield Chemistry, 2022, 39(1):59-63.
    [8] 叶链, 邱正松, 陈晓华, 等. 新型自降解堵漏剂封堵裂缝与保护储层特性评价[J]. 钻井液与完井液,2020,37(6):731-736. doi: 10.3969/j.issn.1001-5620.2020.06.009

    YE Lian, QIU Zhengsong, CHEN Xiaohua, et al. Evaluation on the ability of a new self-degrading lost circulation agent to plug fractures and protect reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):731-736. doi: 10.3969/j.issn.1001-5620.2020.06.009
    [9] 吴鹏飞, 崔华帅, 朱金唐, 等. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J].材料导报,2024,38(13):266-271.

    WU Pengfei, CUI Huashuai, ZHU Jintang, et al. Study on preparation and degradation of PLA/PGA core-sheath composite fiber for temporary plugging agent[J]. Materials Reports, 2024, 38(13):266-271.
    [10] 胡安邦, 于小荣, 彭凯南, 等. 聚酯类颗粒暂堵剂的降解规律及水解机理[J]. 精细化工,2024,41(9):2038-2044,2081.

    HU Anbang, YU Xiaorong, PENG Kainan, et al. Degradation rule and hydrolysis mechanism of polyester particles temporary plugging agents[J]. Fine Chemicals, 2024,41(9):2038-2044, 2081.
    [11] CHANG B Z, LI Y C, WANG W S, et al. Impacts of chain extenders on thermal property, degradation, and rheological performance of poly (butylene adipate-co-terephthalate)[J]. Journal of Materials Research, 2021, 36(15):3134-3144. doi: 10.1557/s43578-021-00308-0
    [12] KLINGLER W W, BIFULCO A, POLISI C, et al. Recyclable inherently flame-retardant thermosets: chemistry, properties and applications[J]. Composites Part B: Engineering, 2023, 258:110667. doi: 10.1016/j.compositesb.2023.110667
    [13] LI T, SUN H Y, HAN H, et al. Ultrafast bulk degradation of polylactic acid by artificially cultured diatom frustules[J]. Composites Science and Technology, 2022, 223:109410. doi: 10.1016/j.compscitech.2022.109410
    [14] KERVRAN M, VAGNER C, COCHEZ M, et al. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: a systematic review[J]. Polymer Degradation and Stability, 2022, 201:109995. doi: 10.1016/j.polymdegradstab.2022.109995
    [15] WAN L, LI C X, SUN C, et al. Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate[J]. Composites Science and Technology, 2019, 181:107675. doi: 10.1016/j.compscitech.2019.06.002
    [16] 黄朵, 王金玉, 郑存川. 聚乳酸颗粒暂堵剂的降解规律及性能[J]. 应用化工,2022,51(11):3240-3244,3250. doi: 10.3969/j.issn.1671-3206.2022.11.026

    HUANG Duo, WANG Jinyu, ZHENG Cunchuan. Degradation regulation and kinetics of polylactic acid temporary steering agent[J]. Applied Chemical Industry, 2022, 51(11):3240-3244,3250. doi: 10.3969/j.issn.1671-3206.2022.11.026
    [17] 张嘉煜, 张玉芳. 共混条件对PBT/PA6共混纤维结构性能的影响[J]. 化工新型材料,2020,48(12):120-123,128.

    ZHANG Jiayu, ZHANG Yufang. Influence of blending condition on structural property of PBT/PA6 fiber[J]. New Chemical Materials, 2020, 48(12):120-123,128.
    [18] 严文, 高山俊, 唐晨. PA6/PBT合金的制备与性能[J]. 工程塑料应用,2017,45(3):5-9. doi: 10.3969/j.issn.1001-3539.2017.03.002

    YAN Wen, GAO Shanjun, TANG Chen. Prepartion and performance of PA6/PBT alloy[J]. Engineering Plastics Application, 2017, 45(3):5-9. doi: 10.3969/j.issn.1001-3539.2017.03.002
    [19] 黄梅, 胡为阅, 宋修艳, 等. 离子液体催化废旧尼龙6水解反应[J]. 工业催化,2018,26(9):79-84. doi: 10.3969/j.issn.1008-1143.2018.09.016

    HUANG Mei, HU Weiyue, SONG Xiuyan, et al. Hydrolysis of waste nylon 6 catalyzed by ionic liquid[J]. Industrial Catalysis, 2018, 26(9):79-84. doi: 10.3969/j.issn.1008-1143.2018.09.016
    [20] STANDAU T, SCHREIERS P, HILGERT K, et al. Properties of bead foams with increased heat stability made from the engineering polymer polybutylene terephthalate(E-PBT)[C]// Proceedings of the 35th International Conference of the Polymer Processing Society (Pps-35). Cesme-Izmir, Turkey, 2019: 020039.
    [21] 金鹿江, 陈晋阳, 刘桂洋, 等. 尼龙6的催化水热解聚工艺与动力学[J]. 高分子材料科学与工程,2010,26(5):65-68.

    JIN Lujiang, CHEN Jinyang, LIU Guiyang, et al. Catalytic hydrothermal depolymerization and kinetics of nylon6[J]. Polymer Materials Science & Engineering, 2010, 26(5):65-68.
    [22] 罗小松, 黄金保, 周梅, 等. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报,2022,73(11):4859-4871.

    LUO Xiaosong, HUANG Jinbao, ZHOU Mei, et al. Theoretical study on the mechanism of hydrolysis/alcoholysis/ammonolysis of butanediol terephthalate dimer[J]. CIESC Journal, 2022, 73(11):4859-4871.
    [23] 王志亮. 聚酰胺6在水热条件下的溶解、水解及结晶行为的研究[D]. 上海: 东华大学, 2016.

    WANG Zhiliang. Dissolution, hydrolysis and crystallization behavior of polyamide 6 in hydrothermal conditions[D]. Shanghai: Donghua University, 2016.
    [24] 王荣, 袁立山, 罗垚, 等. 暂堵剂高温封堵机理及实验评价[J]. 石油化工高等学校学报,2022,35(2):62-67. doi: 10.3969/j.issn.1006-396X.2022.02.010

    WANG Rong, YUAN Lishan, LUO Yao, et al. High temperature plugging mechanism and experimental evaluation of temporary plugging agent[J]. Journal of Petrochemical Universities, 2022, 35(2):62-67. doi: 10.3969/j.issn.1006-396X.2022.02.010
    [25] 石慧. 多元环氧扩链剂对PLA/PBAT共混物及PLA/PBAT/淀粉复合材料微观形貌及性能的影响[D]. 海口: 海南大学, 2017.

    SHI Hui. Effect of multi-epoxy chain extender on microstructure and properties of PLA/PBAT blends and PLA/PBAT/starch composites[D]. Haikou: Hainan University, 2017.
    [26] LOYER C, RÉGNIER G, DUVAL V, et al. Multiscale study of poly(butylene terephthalate) hydrolysis[J]. Polymer Degradation and Stability, 2021, 192:109690. doi: 10.1016/j.polymdegradstab.2021.109690
    [27] BANDLA S, ALLAHKARAMI M, HANAN J C. Thermal crystallinity and mechanical behavior of polyethylene terephthalate[C]//Challenges in Mechanics of Time-Dependent Materials, Volume 2. Cham: Springer, 2015: 141-146.
    [28] NOFAR M, OĞUZ H. Development of PBT/Recycled-PET blends and the influence of using chain extender[J]. Journal of Polymers and the Environment, 2019, 27(7):1404-1417. doi: 10.1007/s10924-019-01435-w
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  69
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-11-23
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回