Development of a Biodegradable Polymer Temporary Plugging Agent for Drilling Fluid
-
摘要: 生物可降解聚酯类暂堵剂的降解性较好,对储层伤害较小,但是具有耐温性不足、封堵强度较小、生产成本较高等问题,导致其目前难以广泛应用。为了满足更高温度条件下暂堵剂的需求,采用水解速率更慢的聚对苯二甲酸丁二酯(PBT)和聚酰胺6(PA6)熔融共混,并加入环氧扩链剂ADR提高共混物的相容性,制备出耐温性能较好、封堵强度较高,并且降解速率可调控的可降解暂堵剂。实验结果表明,制备出的暂堵剂具有较好的降解性能,暂堵剂在120~150℃钻井液条件下(pH=10的NaOH水溶液)降解20~60 d后的失重率均大于80%;当共混比例为70%PBT/30%PA6,并加入1.5%ADR时,暂堵剂的抗压强度可达91 MPa、150℃降解16 h后仍大于70 MPa;与钻井液的配伍性较好,并且封堵性能优良,120℃降解14 d后仍然具有2 MPa的封堵强度。
-
关键词:
- 聚对苯二甲酸丁二酯(PBT) /
- 聚酰胺6(PA6) /
- 暂堵剂 /
- 可控降解
Abstract: Biodegradable polyester temporary plugging agents (TPAs) have good degradability and low damage to reservoirs, but the disadvantages, which include low thermal stability, low strength of the plugging layers formed and high production cost etc., make it difficult for them to be widely used. To satisfy the requirements for TPAs to work at elevated temperatures, a new biodegradable TPA is developed. This new TPA is prepared by melt blending polybutylene terephthalate (PBT), which has slower hydrolysis rate, and polyamide 6 (PA6), and an epoxy chain extender ADR is added to improve the compatibility of the melt blending materials. The new TPA has better thermal stability and forms plugging layers of higher strength. Experimental results show that the new TPA has better degradability, in a NaOH solution (pH=10) at 120-150℃, percent weight loss of the new TPA after 20-60 d is greater than 80%. When the ratio of PBT and PA6 in the melt blending system is 70% PBT/30% PA6, and into the melt blending system add 1.5% ADR, the compressive strength of the new TPA can be 91 MPa, after degrading at 150℃ for 16 h the compressive strength is still greater than 70 MPa. This new TPA has good compatibility with drilling fluids and excellent plugging performance, and after degrading at 120℃ for 14 d, the residual compressive strength of the plugging layer is 2 MPa. -
表 1 在自制无固相实验浆中加入暂堵剂颗粒(100目)前后的配伍性
暂堵
剂/%实验
条件PV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sFLHTHP/
mL极压润
滑系数0 热滚前 19 13.0 0.684 2 热滚前 19 15.5 0.815 120℃、16 h 20 12.0 0.600 18 0.2137 注:FLHTHP在120℃测定。 -
[1] 王纪伟, 康玉柱, 张殿伟, 等. 非常规储层压裂暂堵剂应用进展[J]. 特种油气藏,2021,28(5):1-9.WANG Jiwei, KANG Yuzhu, ZHANG Dianwei, et al. Advances in the application of temporary plugging agents for fracturing in unconventional reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(5):1-9. [2] 孙龙德, 赵文智, 刘合, 等. 页岩油“甜点”概念及其应用讨论[J]. 石油学报,2023,44(1):1-13. doi: 10.7623/syxb202301001SUN Longde, ZHAO Wenzhi, LIU He, et al. Concept and application of "sweet spot" in shale oil[J]. Acta Petrolei Sinica, 2023, 44(1):1-13. doi: 10.7623/syxb202301001 [3] 尚建龙. 石油化工储运的现状分析及发展方向[J]. 石化技术,2022,29(9):241-242.SHANG Jianlong. Analysis of the current situation and development direction of petrochemical storage and transportation[J]. Petrochemical Industry Technology, 2022, 29(9):241-242. [4] 何明舫, 张燕明, 赵振峰, 等. 暂堵剂的研究进展[J]. 化工时刊,2022,36(6):29-33.HE Mingfang, ZHANG Yanming, ZHAO Zhenfeng, et al. Research progress of temporary plugging agent[J]. Chemical Industry Times, 2022, 36(6):29-33. [5] 赵洪波, 单文军, 朱迪斯, 等. 裂缝性地层漏失机理及堵漏材料新进展[J]. 油田化学,2021,38(4):740-746.ZHAO Hongbo, SHAN Wenjun, ZHU Disi, et al. Advance of fractured formation lost circulation mechanism and lost circulation materials in oil and gas wells[J]. Oilfield Chemistry, 2021, 38(4):740-746. [6] 许可, 高航, 石阳, 等. 储层改造用暂堵材料研究进展[J]. 应用化工,2022,51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043XU Ke, GAO Hang, SHI Yang, et al. Research progress of temporary plugging materials for reservoir stimulation[J]. Applied Chemical Industry, 2022, 51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043 [7] 许伟星, 王玉功, 周宾宾. 自降解水溶性暂堵剂的研究及应用[J]. 油田化学,2022,39(1):59-63.XU Weixing, WANG Yugong, ZHOU Binbin. Research and application of self-degrading water-soluble temporary plugging agent[J]. Oilfield Chemistry, 2022, 39(1):59-63. [8] 叶链, 邱正松, 陈晓华, 等. 新型自降解堵漏剂封堵裂缝与保护储层特性评价[J]. 钻井液与完井液,2020,37(6):731-736. doi: 10.3969/j.issn.1001-5620.2020.06.009YE Lian, QIU Zhengsong, CHEN Xiaohua, et al. Evaluation on the ability of a new self-degrading lost circulation agent to plug fractures and protect reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):731-736. doi: 10.3969/j.issn.1001-5620.2020.06.009 [9] 吴鹏飞, 崔华帅, 朱金唐, 等. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J].材料导报,2024,38(13):266-271.WU Pengfei, CUI Huashuai, ZHU Jintang, et al. Study on preparation and degradation of PLA/PGA core-sheath composite fiber for temporary plugging agent[J]. Materials Reports, 2024, 38(13):266-271. [10] 胡安邦, 于小荣, 彭凯南, 等. 聚酯类颗粒暂堵剂的降解规律及水解机理[J]. 精细化工,2024,41(9):2038-2044,2081.HU Anbang, YU Xiaorong, PENG Kainan, et al. Degradation rule and hydrolysis mechanism of polyester particles temporary plugging agents[J]. Fine Chemicals, 2024,41(9):2038-2044, 2081. [11] CHANG B Z, LI Y C, WANG W S, et al. Impacts of chain extenders on thermal property, degradation, and rheological performance of poly (butylene adipate-co-terephthalate)[J]. Journal of Materials Research, 2021, 36(15):3134-3144. doi: 10.1557/s43578-021-00308-0 [12] KLINGLER W W, BIFULCO A, POLISI C, et al. Recyclable inherently flame-retardant thermosets: chemistry, properties and applications[J]. Composites Part B: Engineering, 2023, 258:110667. doi: 10.1016/j.compositesb.2023.110667 [13] LI T, SUN H Y, HAN H, et al. Ultrafast bulk degradation of polylactic acid by artificially cultured diatom frustules[J]. Composites Science and Technology, 2022, 223:109410. doi: 10.1016/j.compscitech.2022.109410 [14] KERVRAN M, VAGNER C, COCHEZ M, et al. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: a systematic review[J]. Polymer Degradation and Stability, 2022, 201:109995. doi: 10.1016/j.polymdegradstab.2022.109995 [15] WAN L, LI C X, SUN C, et al. Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate[J]. Composites Science and Technology, 2019, 181:107675. doi: 10.1016/j.compscitech.2019.06.002 [16] 黄朵, 王金玉, 郑存川. 聚乳酸颗粒暂堵剂的降解规律及性能[J]. 应用化工,2022,51(11):3240-3244,3250. doi: 10.3969/j.issn.1671-3206.2022.11.026HUANG Duo, WANG Jinyu, ZHENG Cunchuan. Degradation regulation and kinetics of polylactic acid temporary steering agent[J]. Applied Chemical Industry, 2022, 51(11):3240-3244,3250. doi: 10.3969/j.issn.1671-3206.2022.11.026 [17] 张嘉煜, 张玉芳. 共混条件对PBT/PA6共混纤维结构性能的影响[J]. 化工新型材料,2020,48(12):120-123,128.ZHANG Jiayu, ZHANG Yufang. Influence of blending condition on structural property of PBT/PA6 fiber[J]. New Chemical Materials, 2020, 48(12):120-123,128. [18] 严文, 高山俊, 唐晨. PA6/PBT合金的制备与性能[J]. 工程塑料应用,2017,45(3):5-9. doi: 10.3969/j.issn.1001-3539.2017.03.002YAN Wen, GAO Shanjun, TANG Chen. Prepartion and performance of PA6/PBT alloy[J]. Engineering Plastics Application, 2017, 45(3):5-9. doi: 10.3969/j.issn.1001-3539.2017.03.002 [19] 黄梅, 胡为阅, 宋修艳, 等. 离子液体催化废旧尼龙6水解反应[J]. 工业催化,2018,26(9):79-84. doi: 10.3969/j.issn.1008-1143.2018.09.016HUANG Mei, HU Weiyue, SONG Xiuyan, et al. Hydrolysis of waste nylon 6 catalyzed by ionic liquid[J]. Industrial Catalysis, 2018, 26(9):79-84. doi: 10.3969/j.issn.1008-1143.2018.09.016 [20] STANDAU T, SCHREIERS P, HILGERT K, et al. Properties of bead foams with increased heat stability made from the engineering polymer polybutylene terephthalate(E-PBT)[C]// Proceedings of the 35th International Conference of the Polymer Processing Society (Pps-35). Cesme-Izmir, Turkey, 2019: 020039. [21] 金鹿江, 陈晋阳, 刘桂洋, 等. 尼龙6的催化水热解聚工艺与动力学[J]. 高分子材料科学与工程,2010,26(5):65-68.JIN Lujiang, CHEN Jinyang, LIU Guiyang, et al. Catalytic hydrothermal depolymerization and kinetics of nylon6[J]. Polymer Materials Science & Engineering, 2010, 26(5):65-68. [22] 罗小松, 黄金保, 周梅, 等. 对苯二甲酸丁二醇酯二聚体水/醇/氨解机理的理论研究[J]. 化工学报,2022,73(11):4859-4871.LUO Xiaosong, HUANG Jinbao, ZHOU Mei, et al. Theoretical study on the mechanism of hydrolysis/alcoholysis/ammonolysis of butanediol terephthalate dimer[J]. CIESC Journal, 2022, 73(11):4859-4871. [23] 王志亮. 聚酰胺6在水热条件下的溶解、水解及结晶行为的研究[D]. 上海: 东华大学, 2016.WANG Zhiliang. Dissolution, hydrolysis and crystallization behavior of polyamide 6 in hydrothermal conditions[D]. Shanghai: Donghua University, 2016. [24] 王荣, 袁立山, 罗垚, 等. 暂堵剂高温封堵机理及实验评价[J]. 石油化工高等学校学报,2022,35(2):62-67. doi: 10.3969/j.issn.1006-396X.2022.02.010WANG Rong, YUAN Lishan, LUO Yao, et al. High temperature plugging mechanism and experimental evaluation of temporary plugging agent[J]. Journal of Petrochemical Universities, 2022, 35(2):62-67. doi: 10.3969/j.issn.1006-396X.2022.02.010 [25] 石慧. 多元环氧扩链剂对PLA/PBAT共混物及PLA/PBAT/淀粉复合材料微观形貌及性能的影响[D]. 海口: 海南大学, 2017.SHI Hui. Effect of multi-epoxy chain extender on microstructure and properties of PLA/PBAT blends and PLA/PBAT/starch composites[D]. Haikou: Hainan University, 2017. [26] LOYER C, RÉGNIER G, DUVAL V, et al. Multiscale study of poly(butylene terephthalate) hydrolysis[J]. Polymer Degradation and Stability, 2021, 192:109690. doi: 10.1016/j.polymdegradstab.2021.109690 [27] BANDLA S, ALLAHKARAMI M, HANAN J C. Thermal crystallinity and mechanical behavior of polyethylene terephthalate[C]//Challenges in Mechanics of Time-Dependent Materials, Volume 2. Cham: Springer, 2015: 141-146. [28] NOFAR M, OĞUZ H. Development of PBT/Recycled-PET blends and the influence of using chain extender[J]. Journal of Polymers and the Environment, 2019, 27(7):1404-1417. doi: 10.1007/s10924-019-01435-w -