留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于新疆沙排9组地层抗高温新型离子液体抑制剂及抑制机理

高世峰 屈沅治 黄宏军 任晗 贾海东 刘敬平 贾寒

高世峰,屈沅治,黄宏军,等. 适用于新疆沙排9组地层抗高温新型离子液体抑制剂及抑制机理[J]. 钻井液与完井液,2025,42(1):66-73 doi: 10.12358/j.issn.1001-5620.2025.01.007
引用本文: 高世峰,屈沅治,黄宏军,等. 适用于新疆沙排9组地层抗高温新型离子液体抑制剂及抑制机理[J]. 钻井液与完井液,2025,42(1):66-73 doi: 10.12358/j.issn.1001-5620.2025.01.007
GAO Shifeng, QU Yuanzhi, HUANG Hongjun, et al.Investigation of high-temperature resistant ionic liquid inhibitors for xinjiang shapaigroup 9 and their inhibition mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(1):66-73 doi: 10.12358/j.issn.1001-5620.2025.01.007
Citation: GAO Shifeng, QU Yuanzhi, HUANG Hongjun, et al.Investigation of high-temperature resistant ionic liquid inhibitors for xinjiang shapaigroup 9 and their inhibition mechanism[J]. Drilling Fluid & Completion Fluid,2025, 42(1):66-73 doi: 10.12358/j.issn.1001-5620.2025.01.007

适用于新疆沙排9组地层抗高温新型离子液体抑制剂及抑制机理

doi: 10.12358/j.issn.1001-5620.2025.01.007
基金项目: 中国石油集团关键核心技术攻关项目“抗温240℃以上的环保井筒工作液新材料”(2020A-3913);中国石油集团前瞻性基础性战略性技术攻关课题“准噶尔和柴达木盆地复杂地层垮塌机理及强抑制封堵材料研发” (2021DJ4407);中国石油天然气集团公司直属院所基础科学研究和战略储备技术研究基金项目“聚合物类钻井液处理剂抗温抗盐机理与关键材料研发”(2021DQ03-15)。
详细信息
    作者简介:

    高世峰,1989年生,高级工程师,博士,毕业于中国石油大学(北京)化学工程与技术专业,现在主要从事钻井液基础理论、处理剂研发等相关技术工作。电话 (010)80162064;E-mail:gaosfdr@cnpc.com.cn。

    通讯作者:

    贾寒,1983年生,博士,教授,中国石油大学(华东)石油工程学院碳储科学与工程系主任,现在主要从事胶体化学与提高采收率研究。E-mail:jiahan@upc.edu.cn。

  • 中图分类号: TE254.4

Investigation of High-Temperature Resistant Ionic Liquid Inhibitors for Xinjiang ShapaiGroup 9 and Their Inhibition Mechanism

  • 摘要: 借助X射线衍射、红外光谱、扫描电子显微镜和水接触角从多角度探明了新疆沙排9组储层岩性对井壁稳定的影响,并对3种典型离子液体(MOA、CP-DES、MM6)进行了抑制性能评价、抑制机理研究和应用效果分析。该组岩石黏土矿物含量高,且表面含有大量羟基,遇水极易膨胀。在3种离子液体抑制剂处理的岩样中,最低的线性膨胀率(21.2%),最高的滚动回收率(63.1%,180℃)以及钻井液体系良好的应用效果,表明共熔物类离子液体(CP-DES)最适宜作为新疆沙排9组地层的抑制剂。进一步研究发现,CP-DES能够通过氢键与黏土表面形成强相互作用,并进入黏土层间阻碍水的入侵。同时阳离子基团压缩黏土颗粒周围的扩散双电层,减弱颗粒间的静电排斥力,进而抑制了黏土矿物的水化膨胀。

     

  • 图  1  三种离子液体抑制剂的分子结构图

    图  2  新疆沙排9组岩样在水中浸泡0 h、1 h、 12 h和24 h(从左到右)后的形态图像

    图  3  新疆沙排9组地层岩样的红外光谱图

    图  4  新疆沙排9组地层岩样水化前后的扫描电镜图像

    图  5  新疆沙排9组地层岩样的接触角

    图  6  抑制剂处理过新疆沙排9组地层岩样的质量分数随温度的变化

    图  7  不同缓蚀剂处理新疆沙排9组地层岩样的线性膨胀率及滚动回收率

    图  8  不同离子液体抑制剂的分子构型

    图  9  去离子水和不同抑制剂溶液处理的新疆沙排9组地层岩样的XRD

    图  10  抑制剂处理新疆沙排9组地层岩样的水接触角

    图  11  抑制剂处理新疆沙排9组地层岩样 的Zeta电位和粒径分布

    表  1  新疆沙排9组地层岩样矿物组成及参数

    全岩矿物组成/% 黏土矿物组成/% 总有机碳
    TOC/%
    阳离子交换容量
    CEC/(mmol/kg)
    膨润土相当量
    MPT/(g/kg)
    石英 钾长石 铁白云石 赤铁矿 高岭石 绿泥石 伊利石 伊/
    蒙混层
    34.27 5.44 1.36 2.33 2.24 2.18 1.51 94.07 0.058 46.4 66.2
    下载: 导出CSV

    表  2  加入不同离子液体抑制剂的水基钻井液抑制性能

    0.5%
    CP-DES
    0.5%
    MOA
    0.5%
    MM6
    空白
    滚动回收(180℃×16 h) 65.4 33.2 51.7 9.1
    线性膨胀(室温×24 h) 16.8 32.9 26.1 59.0
    下载: 导出CSV
  • [1] 张卫东, 韩磊, 王富华, 等. 页岩抑制剂的抑制机理及研究进展[J]. 钻井液与完井液,2021,38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001

    ZHANG Weidong, HAN Lei, WANG Fuhua, et al. Research progress of inhibition mechanism of shale inhibitors[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001
    [2] 钟汉毅, 邱正松, 黄维安, 等. 胺类页岩抑制剂特点及研究进展[J]. 石油钻探技术,2010,38(1):104-108. doi: 10.3969/j.issn.1001-0890.2010.01.026

    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Development and features of amine shale inhibitors[J]. Petroleum Drilling Techniques, 2010, 38(1):104-108. doi: 10.3969/j.issn.1001-0890.2010.01.026
    [3] 唐睿, 刘丹洁, 文科, 等. 基于吩噻嗪自组装的页岩抑制剂研究[J]. 化学研究与应用,2024,36(1):144-150. doi: 10.3969/j.issn.1004-1656.2024.01.017

    TANG Rui, LIU Danjie, WEN Ke, et al. Study on shale inhibitor based on phenothiazine self-assembly[J]. Chemical Research and Application, 2024, 36(1):144-150. doi: 10.3969/j.issn.1004-1656.2024.01.017
    [4] 焦小光, 李树皎, 左京杰, 等. 离子液体及其在钻井液领域中的应用[J]. 钻井液与完井液,2021,38(1):9-13.

    JIAO Xiaoguang, LI Shujiao, ZUO Jingjie, et al. Ionic liquids and their application in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):9-13.
    [5] 宋振华, 袁爽, 林倬, 等. 离子液体用作页岩抑制剂的研究进展[J]. 辽宁化工,2023,52(10):1524-1527. doi: 10.3969/j.issn.1004-0935.2023.10.033

    SONG Zhenhua, YUAN Shuang, LIN Zhuo, et al. Research progress of Ionic liquids as shale inhibitor[J]. Liaoning Chemical Industry, 2023, 52(10):1524-1527. doi: 10.3969/j.issn.1004-0935.2023.10.033
    [6] 任妍君, 陈欢, 杨弘. 氨基离子液体聚合物抗高温抑制剂的作用机理[J]. 钻井液与完井液,2023,40(3):289-295,302. doi: 10.12358/j.issn.1001-5620.2023.03.002

    REN Yanjun, CHEN Huan, YANG Hong. Application of polymer based on amino Ionic liquid as anti-high temperature inhibitor and the mechanism[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):289-295,302. doi: 10.12358/j.issn.1001-5620.2023.03.002
    [7] AHMED H M, KAMAL M S, AL-HARTHI M. Polymeric and low molecular weight shale inhibitors: A review[J]. Fuel, 2019, 251:187-217.
    [8] REN Y J, ZHAI Y F, WU L S, et al. Amine- and alcohol-functionalized Ionic liquids: Inhibition difference and application in water-based drilling fluids for wellbore stability[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2021, 609:125678. doi: 10.1016/j.colsurfa.2020.125678
    [9] REN Y J, WANG H N, REN Z C, et al. Adsorption of imidazolium-based Ionic liquid on sodium bentonite and its effects on rheological and swelling behaviors[J]. Applied Clay Science, 2019, 182:105248. doi: 10.1016/j.clay.2019.105248
    [10] 杨潇. 乙烯基咪唑类离子液体在钻井液抑制剂中的应用[D]. 北京: 中国石油大学(北京), 2019.

    YANG Xiao. Application of vinyl imidazole Ionic liquids in drilling fluid inhibitors[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [11] JIA H, WANG S Y, WANG Z, et al. Investigation of anionic group effects on the shale inhibition performance of fatty acid-based Ionic liquids and their inhibition mechanism[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2022, 636:128135. doi: 10.1016/j.colsurfa.2021.128135
    [12] 高斐, 何云, 董淼, 等. 一种新型双季铵盐页岩抑制剂的制备及其作用机理[J]. 中国科技论文,2023,18(6):694-698. doi: 10.3969/j.issn.2095-2783.2023.06.018

    GAO Fei, HE Yun, DONG Miao, et al. Preparation and mechanism of a novel double quaternary ammonium salt shale inhibitor[J]. China Sciencepaper, 2023, 18(6):694-698. doi: 10.3969/j.issn.2095-2783.2023.06.018
    [13] JIA H, HUANG P, WANG Q X, et al. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids[J]. Fuel, 2019, 244:403-411. doi: 10.1016/j.fuel.2019.02.018
    [14] YANG L L, YANG X, WANG T D, et al. Effect of alkyl chain length on shale hydration inhibitive performance of Vinylimidazolium-Based Ionic liquids[J]. Industrial & Engineering Chemistry Research, 2019, 58(20):8565-8577.
    [15] HE Y, ZHOU L H, GOU S H, et al. Imidazolium Gemini Ionic liquids for regulating facilely the swelling and dispersion of montmorillonite in water[J]. Applied Clay Science, 2022, 219:106457. doi: 10.1016/j.clay.2022.106457
    [16] JIA H, WEI X, WANG Q X, et al. Investigation of the effects of functional groups on the inhibition performances of Imidazolium-Based Bola-Form Ionic liquids as novel High-Performance shale inhibitors[J]. Energy & Fuels, 2023, 37(14):10585-10593.
    [17] 中国国家标准化管理委员会. 膨润土: GB/T20973-2007 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Bentonite: GB/T20973-2007[S]. Beijing: Standards Press Of China, 2008.
    [18] 地质矿产部科学技术司实验管理处. 岩石和矿石分析规程: DZG93-06[S]. 西安: 陕西科学技术出版社, 2006.

    De Zhi Kuang Chan Bu Ke Xue Ji Shu Si Shi Yan Guan Li Chu. regulations for rock and ore analysis: DZG93-06[S]. Xi'an: Shaanxi Science and Technology Press, 2006.
    [19] 雷新荣, 刘惠芳. 沉积地层伊/蒙混层黏土矿物的晶体结构晶体化学研究[J]. 沉积学报,1997,15(1):98-103.

    LEI Xinrong, LIU Huifang. Crystal structure and crystallochemistry study on illite/smectite interstratified clay minerals in sedimentary strata[J]. Acta Sedimentologica Sinica, 1997, 15(1):98-103.
    [20] 刘锋报, 邵海波, 周志世, 等. 哈拉哈塘油田硬脆性泥页岩井壁失稳机理及对策[J]. 钻井液与完井液,2015,32(1):38-41. doi: 10.3969/j.issn.1001-5620.2015.01.10

    LIU Fengbao, SHAO Haibo, ZHOU Zhishi, et al. Mechanism and strategy to deal with borehole instability of hard and brittle shales in halahatang oilfield[J]. Drilling Fluid & Completion Fluid, 2015, 32(1):38-41. doi: 10.3969/j.issn.1001-5620.2015.01.10
    [21] 张帆. 抗高温强抑制有机硅酸盐聚合物水基钻井液研究[D]. 青岛: 中国石油大学(华东), 2021.

    ZHANG Fan. Study on organosilicate polymer as high temperature resistent inhibitor for water-based drilling fluids[D]. Qingdao: China University of Petroleum(East China), 2021.
    [22] 李志敏. 塔里木盆地A区块强抑制钻井液研究及应用[D]. 青岛: 中国石油大学(华东), 2020.

    LI Zhimin. Study on the application of strong inhibition drilling fluid in block a of tarim basin[D]. Qingdao: China University of Petroleum(East China), 2020.
    [23] 屈沅治, 程荣超, 张志磊, 等. 环保型页岩抑制剂SGI-1的合成与性能研究[J]. 当代化工研究,2021(3):4-6. doi: 10.3969/j.issn.1672-8114.2021.03.002

    QU Yuanzhi, CHENG Rongchao, ZHANG Zhilei, et al. Study on synthesis and performance of environment-friendly shale inhibitors SGI-1[J]. Modern Chemical Research, 2021(3):4-6. doi: 10.3969/j.issn.1672-8114.2021.03.002
    [24] 王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114-123.

    WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4):114-123
    [25] 李凡,李大奇,金军斌,等. 顺北油气田辉绿岩地层井壁稳定钻井液技术[J]. 石油钻探技术,2023,51(2):61-67.
    [26] 白佳佳,顾添帅,陶磊,等. 深共晶溶剂抑制页岩水化的应用与展望[J]. 钻井液与完井液,2024,41(2):141-147.

    BAI Jiajia, GU Tianshuai, TAO Lei, et al. Application and prospect of deep eutectic solvent inhibition in shale hydration[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):141-147
    [27] 任妍君,陈欢,杨弘. 氨基离子液体聚合物抗高温抑制剂的作用机理[J]. 钻井液与完井液,2023,40(3):289-295,302.

    REN Yanjun, CHEN Huan, YANG Hong. Application of polymer based on amino ionic liquid as anti-high temperature inhibitor and the mechanism[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):289-295,302
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  43
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-12
  • 修回日期:  2024-10-28
  • 录用日期:  2024-10-28
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回