Investigation of High-Temperature Resistant Ionic Liquid Inhibitors for Xinjiang ShapaiGroup 9 and Their Inhibition Mechanism
-
摘要: 借助X射线衍射、红外光谱、扫描电子显微镜和水接触角从多角度探明了新疆沙排9组储层岩性对井壁稳定的影响,并对3种典型离子液体(MOA、CP-DES、MM6)进行了抑制性能评价、抑制机理研究和应用效果分析。该组岩石黏土矿物含量高,且表面含有大量羟基,遇水极易膨胀。在3种离子液体抑制剂处理的岩样中,最低的线性膨胀率(21.2%),最高的滚动回收率(63.1%,180℃)以及钻井液体系良好的应用效果,表明共熔物类离子液体(CP-DES)最适宜作为新疆沙排9组地层的抑制剂。进一步研究发现,CP-DES能够通过氢键与黏土表面形成强相互作用,并进入黏土层间阻碍水的入侵。同时阳离子基团压缩黏土颗粒周围的扩散双电层,减弱颗粒间的静电排斥力,进而抑制了黏土矿物的水化膨胀。Abstract: The effect of reservoir lithology on the stability of the wellbore in Xinjiang Shapai Group 9 was investigated from multiple perspectives via X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and water contact angle. The inhibition performance, inhibition mechanism, and application of three typical ionic liquids (MOA, CP-DES, MM6) were evaluated.The rocks in this group have a high content of clay minerals and contain a large number of hydroxyl groups on their surfaces, which are highly susceptible to swelling with water. Among the samples treated by three ionic liquid inhibitors, the lowest linear swelling rate (21.2%), the highest hot-rolling recovery (63.1%, 180℃), and the excellent application results of drilling fluid system indicate that deep eutectic solvent ionic liquid (CP-DES) is the most suitable inhibitor for the Xinjiang Shapai Group 9.Further studies revealed that CP-DES could form strong interactions with the clay surface through hydrogen bonding and enter the clay interlayer to hinder the intrusion of water. Meanwhile, the cationic groups could compress the electric double layer on the clay surfaces and weaken the electrostatic repulsion between the particles, which consequently inhibited the hydration swelling of the clay.
-
Key words:
- ionic liquids /
- shale inhibitors /
- lithology analysis /
- intermolecular interactions
-
表 1 新疆沙排9组地层岩样矿物组成及参数
全岩矿物组成/% 黏土矿物组成/% 总有机碳
TOC/%阳离子交换容量
CEC/(mmol/kg)膨润土相当量
MPT/(g/kg)石英 钾长石 铁白云石 赤铁矿 高岭石 绿泥石 伊利石 伊/
蒙混层34.27 5.44 1.36 2.33 2.24 2.18 1.51 94.07 0.058 46.4 66.2 表 2 加入不同离子液体抑制剂的水基钻井液抑制性能
0.5%
CP-DES0.5%
MOA0.5%
MM6空白 滚动回收(180℃×16 h) 65.4 33.2 51.7 9.1 线性膨胀(室温×24 h) 16.8 32.9 26.1 59.0 -
[1] 张卫东, 韩磊, 王富华, 等. 页岩抑制剂的抑制机理及研究进展[J]. 钻井液与完井液,2021,38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001ZHANG Weidong, HAN Lei, WANG Fuhua, et al. Research progress of inhibition mechanism of shale inhibitors[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):1-8. doi: 10.3969/j.issn.1001-5620.2021.01.001 [2] 钟汉毅, 邱正松, 黄维安, 等. 胺类页岩抑制剂特点及研究进展[J]. 石油钻探技术,2010,38(1):104-108. doi: 10.3969/j.issn.1001-0890.2010.01.026ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Development and features of amine shale inhibitors[J]. Petroleum Drilling Techniques, 2010, 38(1):104-108. doi: 10.3969/j.issn.1001-0890.2010.01.026 [3] 唐睿, 刘丹洁, 文科, 等. 基于吩噻嗪自组装的页岩抑制剂研究[J]. 化学研究与应用,2024,36(1):144-150. doi: 10.3969/j.issn.1004-1656.2024.01.017TANG Rui, LIU Danjie, WEN Ke, et al. Study on shale inhibitor based on phenothiazine self-assembly[J]. Chemical Research and Application, 2024, 36(1):144-150. doi: 10.3969/j.issn.1004-1656.2024.01.017 [4] 焦小光, 李树皎, 左京杰, 等. 离子液体及其在钻井液领域中的应用[J]. 钻井液与完井液,2021,38(1):9-13.JIAO Xiaoguang, LI Shujiao, ZUO Jingjie, et al. Ionic liquids and their application in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):9-13. [5] 宋振华, 袁爽, 林倬, 等. 离子液体用作页岩抑制剂的研究进展[J]. 辽宁化工,2023,52(10):1524-1527. doi: 10.3969/j.issn.1004-0935.2023.10.033SONG Zhenhua, YUAN Shuang, LIN Zhuo, et al. Research progress of Ionic liquids as shale inhibitor[J]. Liaoning Chemical Industry, 2023, 52(10):1524-1527. doi: 10.3969/j.issn.1004-0935.2023.10.033 [6] 任妍君, 陈欢, 杨弘. 氨基离子液体聚合物抗高温抑制剂的作用机理[J]. 钻井液与完井液,2023,40(3):289-295,302. doi: 10.12358/j.issn.1001-5620.2023.03.002REN Yanjun, CHEN Huan, YANG Hong. Application of polymer based on amino Ionic liquid as anti-high temperature inhibitor and the mechanism[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):289-295,302. doi: 10.12358/j.issn.1001-5620.2023.03.002 [7] AHMED H M, KAMAL M S, AL-HARTHI M. Polymeric and low molecular weight shale inhibitors: A review[J]. Fuel, 2019, 251:187-217. [8] REN Y J, ZHAI Y F, WU L S, et al. Amine- and alcohol-functionalized Ionic liquids: Inhibition difference and application in water-based drilling fluids for wellbore stability[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2021, 609:125678. doi: 10.1016/j.colsurfa.2020.125678 [9] REN Y J, WANG H N, REN Z C, et al. Adsorption of imidazolium-based Ionic liquid on sodium bentonite and its effects on rheological and swelling behaviors[J]. Applied Clay Science, 2019, 182:105248. doi: 10.1016/j.clay.2019.105248 [10] 杨潇. 乙烯基咪唑类离子液体在钻井液抑制剂中的应用[D]. 北京: 中国石油大学(北京), 2019.YANG Xiao. Application of vinyl imidazole Ionic liquids in drilling fluid inhibitors[D]. Beijing: China University of Petroleum(Beijing), 2019. [11] JIA H, WANG S Y, WANG Z, et al. Investigation of anionic group effects on the shale inhibition performance of fatty acid-based Ionic liquids and their inhibition mechanism[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2022, 636:128135. doi: 10.1016/j.colsurfa.2021.128135 [12] 高斐, 何云, 董淼, 等. 一种新型双季铵盐页岩抑制剂的制备及其作用机理[J]. 中国科技论文,2023,18(6):694-698. doi: 10.3969/j.issn.2095-2783.2023.06.018GAO Fei, HE Yun, DONG Miao, et al. Preparation and mechanism of a novel double quaternary ammonium salt shale inhibitor[J]. China Sciencepaper, 2023, 18(6):694-698. doi: 10.3969/j.issn.2095-2783.2023.06.018 [13] JIA H, HUANG P, WANG Q X, et al. Investigation of inhibition mechanism of three deep eutectic solvents as potential shale inhibitors in water-based drilling fluids[J]. Fuel, 2019, 244:403-411. doi: 10.1016/j.fuel.2019.02.018 [14] YANG L L, YANG X, WANG T D, et al. Effect of alkyl chain length on shale hydration inhibitive performance of Vinylimidazolium-Based Ionic liquids[J]. Industrial & Engineering Chemistry Research, 2019, 58(20):8565-8577. [15] HE Y, ZHOU L H, GOU S H, et al. Imidazolium Gemini Ionic liquids for regulating facilely the swelling and dispersion of montmorillonite in water[J]. Applied Clay Science, 2022, 219:106457. doi: 10.1016/j.clay.2022.106457 [16] JIA H, WEI X, WANG Q X, et al. Investigation of the effects of functional groups on the inhibition performances of Imidazolium-Based Bola-Form Ionic liquids as novel High-Performance shale inhibitors[J]. Energy & Fuels, 2023, 37(14):10585-10593. [17] 中国国家标准化管理委员会. 膨润土: GB/T20973-2007 [S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Bentonite: GB/T20973-2007[S]. Beijing: Standards Press Of China, 2008. [18] 地质矿产部科学技术司实验管理处. 岩石和矿石分析规程: DZG93-06[S]. 西安: 陕西科学技术出版社, 2006.De Zhi Kuang Chan Bu Ke Xue Ji Shu Si Shi Yan Guan Li Chu. regulations for rock and ore analysis: DZG93-06[S]. Xi'an: Shaanxi Science and Technology Press, 2006. [19] 雷新荣, 刘惠芳. 沉积地层伊/蒙混层黏土矿物的晶体结构晶体化学研究[J]. 沉积学报,1997,15(1):98-103.LEI Xinrong, LIU Huifang. Crystal structure and crystallochemistry study on illite/smectite interstratified clay minerals in sedimentary strata[J]. Acta Sedimentologica Sinica, 1997, 15(1):98-103. [20] 刘锋报, 邵海波, 周志世, 等. 哈拉哈塘油田硬脆性泥页岩井壁失稳机理及对策[J]. 钻井液与完井液,2015,32(1):38-41. doi: 10.3969/j.issn.1001-5620.2015.01.10LIU Fengbao, SHAO Haibo, ZHOU Zhishi, et al. Mechanism and strategy to deal with borehole instability of hard and brittle shales in halahatang oilfield[J]. Drilling Fluid & Completion Fluid, 2015, 32(1):38-41. doi: 10.3969/j.issn.1001-5620.2015.01.10 [21] 张帆. 抗高温强抑制有机硅酸盐聚合物水基钻井液研究[D]. 青岛: 中国石油大学(华东), 2021.ZHANG Fan. Study on organosilicate polymer as high temperature resistent inhibitor for water-based drilling fluids[D]. Qingdao: China University of Petroleum(East China), 2021. [22] 李志敏. 塔里木盆地A区块强抑制钻井液研究及应用[D]. 青岛: 中国石油大学(华东), 2020.LI Zhimin. Study on the application of strong inhibition drilling fluid in block a of tarim basin[D]. Qingdao: China University of Petroleum(East China), 2020. [23] 屈沅治, 程荣超, 张志磊, 等. 环保型页岩抑制剂SGI-1的合成与性能研究[J]. 当代化工研究,2021(3):4-6. doi: 10.3969/j.issn.1672-8114.2021.03.002QU Yuanzhi, CHENG Rongchao, ZHANG Zhilei, et al. Study on synthesis and performance of environment-friendly shale inhibitors SGI-1[J]. Modern Chemical Research, 2021(3):4-6. doi: 10.3969/j.issn.1672-8114.2021.03.002 [24] 王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114-123.WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4):114-123 [25] 李凡,李大奇,金军斌,等. 顺北油气田辉绿岩地层井壁稳定钻井液技术[J]. 石油钻探技术,2023,51(2):61-67. [26] 白佳佳,顾添帅,陶磊,等. 深共晶溶剂抑制页岩水化的应用与展望[J]. 钻井液与完井液,2024,41(2):141-147.BAI Jiajia, GU Tianshuai, TAO Lei, et al. Application and prospect of deep eutectic solvent inhibition in shale hydration[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):141-147 [27] 任妍君,陈欢,杨弘. 氨基离子液体聚合物抗高温抑制剂的作用机理[J]. 钻井液与完井液,2023,40(3):289-295,302.REN Yanjun, CHEN Huan, YANG Hong. Application of polymer based on amino ionic liquid as anti-high temperature inhibitor and the mechanism[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):289-295,302 -