Mechanisms of Borehole Wall Destabilization in Drilling Shale Formations in the Central Part of Block Jinzhou-25-1 in Bohai Basin and Drilling Fluid Countermeasures
-
摘要: 渤海盆地锦州25-1区块中部东营组泥页岩地层井壁失稳状况频发。根据泥页岩组构、理化性质分析及力学特性测试结果,发现泥页岩水化膨胀所导致的强度弱化及易沿层理面的剪切滑移是该层位主要失稳机理。基于泥页岩强度弱化及沿层理面滑移特性,从基本性能、封堵性、抑制性、维持力学强度等角度对水基PEM及合成基BIODRILL S钻井液体系进行对比评价优化。研究结果表明,合成基BIODRILL S钻井液体系在滚动回收率、线性膨胀率、高温高压滤失量及维持泥页岩力学强度等方面均具有明显优势,同时配合(2%~2.5%)纳米材料乳胶封堵剂PF-NSEAL能够对泥页岩微裂缝进行有效封堵。现场应用表明,优化后的合成基BIODRILL S钻井液体系在两口大位移井的应用过程中起到了大幅降低复杂情况,提效43.7%的良好应用效果,为解决锦州25-1区块井壁失稳问题提供了技术支撑。Abstract: Well drilling in the central part of the block Jinzhou-25-1 in Bohai basin has frequently encountered borehole wall destabilization when drilling the Dongying formation shales. Based on the analyses of the components and structure of the shales as well as the measurement of their mechanical properties, it was found that the borehole wall destabilizes mainly in two mechanisms, first is the weakening of the shales caused by hydration and swelling, second is the shearing slip of the formations along the bedding planes. Based on this understanding, a water based drilling fluid PEM and a synthetic based drilling fluid BIODRILL S were compared for their performance from several aspects such as basic properties, plugging capacity, inhibitive capacity and the ability to maintain mechanical strength of a formation etc. It was found that the BIODRILL S drilling fluid has several advantages over the PEM drilling fluid, such as high percentage of shale cuttings recovery in hot rolling test, lower linear expansion rate, lower high temperature high pressure filtration rate as well as better performance in maintaining the mechanical strength of the shale formations. A nano-latex plugging agent PF-NSEAL was added into the BIODRILL S drilling fluid at concentrations between 2% and 2.5%, rendering it better microfracture plugging performance. In field operation, the optimized BIODRILL S drilling fluid was used to drill two extended reach wells, the number of downhole problems was greatly reduced, and the drilling rate was increased by 43.7%. The use of the optimized BIODRILL S synthetic based drilling fluid has provided a technical support for solving the borehole wall destabilization problem encountered in block Jinzhou-25-1.
-
Key words:
- Block Jinzhou-25-1 /
- Mud shale /
- Borehole wall destabilization /
- Drilling fluid /
- Plugging property
-
表 1 东营组全岩矿物组分测试结果
样品 垂深/
m矿物含量/% 石英 钾长
石斜长
石方解
石白云
石菱铁
矿其他 黏土
矿物1 1450 18.0 2.9 3.4 23.9 0.4 51.4 2 1450 20.6 2.7 3.7 5.4 10.7 56.9 3 1481 14.6 2.2 2.8 8.3 12.3 15.1 44.7 4 1452 19.9 3.5 4.3 8.1 2.9 2.8 58.5 5 1450 23.2 3.6 5.1 7.7 2.6 57.8 表 2 东营组黏土矿物组分测试结果
样品 垂深/
m黏土矿物相对含量/% 混层比/% S I/S It Kao C C/S Pa I/S C/S 1 1450 83 13 4 75 2 1450 79 15 6 55 3 1481 88 8 4 60 4 1452 76 19 5 50 5 1450 83 11 6 55 表 3 东营组泥岩水基PEM钻井液浸泡前后单三轴抗压强度测试
岩心 长度/
mm直径/
mmm/
g钻井液 围压/
MPap/
MPa杨氏模量/
GPa泊松
比1# 40.93 25.33 43.33 无浸泡 0 26.594 8.252 0.255 2# 47.78 25.15 50.04 20 61.861 2.135 0.152 3# 40.47 25.12 48.10 1# 0 18.460 4.657 0.251 4# 40.33 24.92 47.99 20 32.540 5.214 0.214 注:1#为现场所用水基PEM钻井液体系。 表 4 天然泥岩的分类及所属类别
分类 分类依据 泥岩分类 主要理化性质 主要力学特征 地层类型 黏土矿物 膨胀率/% 回收率/% UCS/MPa 泊松比 E/GPa 一类 S为主,S>50% 软泥页岩 >20 <30 <30 >0.30 1.3~6.0 完整地层 二类 S/I、I为主S/I+I>70% 硬脆性泥页岩 12~22 30-60 20~60 0.30~0.35 6.0~20.0 完整地层 三类 I、I/S为主,I/S+I>60% 7~14 60~90 50~120 0.15~0.35 10.0~33.0 裂缝层理组合地层 四类 I为主,I>70% <7 >90 100~160 <0.20 >25.0 裂缝层理组合地层 表 5 不同温度老化后合成基BIODRILL S钻井液体系性能评价结果
T老化/℃ ρ/(g·cm−3) T/℃ $ {\varphi _6}/{\varphi _3} $ Gel/(Pa/Pa) AV/mPa·s PV/mPa·s YP/Pa ES/V FLHTHP(90℃)/mL 40 1.40 15 13/12 9.0/15.5 38 26 12 674 2.0 50 13/12 8.0/11.0 25 15 10 802 60 1.40 15 12/11 7.0/11.5 37 26 11 711 2.2 50 13/12 7.0/9.0 25 15 10 795 90 1.40 15 12/11 7.0/11.5 37 26 11 702 2.4 50 12/11 7.0/9.0 25 15 10 763 表 6 两种钻井液性能评价实验结果对比
钻井液
配方ρ/
g·cm−3$ {\varphi _6}/{\varphi _3} $ Gel/
Pa/PaPV/
mPa·sYP/
PaES/
VFLHTHP
90℃/mL2# 1.45 14/13 7.0/13.0 22 10.5 850 2.0 1.48 13/12 7.0/13.0 20 10.0 850 2.0 1.50 13/12 6.0/13.0 21 10.0 830 2.0 1# 1.40 10/8 3.5/5.0 25 14.0 2.8 1.40 10/9 3.5/5.0 17 13.5 3.6 注:1#为现场所用水基PEM钻井液体系,2#为未优化合成基BIODRILL S钻井液体系;测试温度为65℃。 表 7 合成基BIODRILL S钻井液体系浸泡后岩心单三轴抗压强度测试结果
岩心编号 长度/mm 直径/mm 质量/g 围压/MPa 抗压强度/MPa 杨氏模量/GPa 泊松比 5# 45.12 25.42 51.23 0 23.115 3.82 0.245 6# 43.92 25.17 50.18 20 45.852 4.71 0.309 表 8 合成基BIODRILL S钻井液添加不同用量PF-NSEAL老化后性能对比结果
PF-NSEAL/% $ {\varphi _{600}}/{\varphi _{300}} $ $ {\varphi _{200}}/{\varphi _{100}} $ $ {\varphi _6}/{\varphi _3} $ Gel/(Pa/Pa) ES/V FLHTHP/mL 0 42/25 15/10 5/5 2.5/3.5 850 3.0 1 42/25 18/12 6/5 3.0/4.0 840 2.6 2 38/24 19/13 6/5 3.0/4.5 835 2.4 3 40/24 18/12 6/5 3.0/4.5 930 2.8 注:老化条件为60℃、16 h;高温高压滤失量的条件为90℃。 表 9 不同钻井液体系实际钻井参数对比
钻井
液体系套管摩阻
系数裸眼摩阻
系数岩屑
浓度/%平均工期
对比/d1# 0.21 0.26 4.59 14.53 3# 0.15 0.19 1.40 8.18 注:1#为现场所用水基PEM钻井液体系,3#为优化后合成基BIODRILL S钻井液体系。 -
[1] FAIRHURST C. Measurement of in-situ rock stresses. With particular reference to hydraulic fracturing[J]. Rock Mech, 1964, 2:7056203. [2] 黄荣樽, 白家祉, 周煜辉. 斜井井壁张性裂纹的位置及走向与井眼压力的关系[J]. 石油钻采工艺,1993,15(5):7-11.HUANG Rongzun, BAI Jiazhi, ZHOU Yuhui. Relationship between location and strike of wall tension crack and borehole pressure[J]. Oil Drilling & Production Technology, 1993, 15(5):7-11. [3] 邓金根, 郭东旭, 周建良, 等. 泥页岩井壁应力的力学-化学耦合计算模式及数值求解方法[J]. 岩石力学与工程学报,2003,22(z1):2250-2253. doi: 10.3321/j.issn:1000-6915.2003.z1.027DENG Jingen, GUO Dongxu, ZHOU Jianliang, et al. Mechanics-chemistry coupling calculation model of borehole stress in shale formation and its numerical solving method[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(z1):2250-2253. doi: 10.3321/j.issn:1000-6915.2003.z1.027 [4] 黄荣樽, 陈勉, 邓金根, 等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3): 18-24, 28.HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Coupling study of wellbore stability mechanics and chemistry of mud shale[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 15-21, 25. [5] 王萍, 屈展. 基于核磁共振的脆硬性泥页岩水化损伤演化研究[J]. 岩土力学,2015,36(3):687-693.WANG Ping, QU Zhan. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock and Soil Mechanics, 2015, 36(3):687-693. [6] 狄明利, 赵远远, 由福昌, 等. 西江区块古近系地层井壁失稳机理分析及钻井液体系优化[J]. 中国海上油气,2020,32(1):134-141.DI Mingli, ZHAO Yuanyuan, YOU Fuchang, et al. Analysis on wellbore instability mechanisms and drilling fluid system optimization for the Paleogene strata in Xijiang block[J]. China Offshore Oil and Gas, 2020, 32(1):134-141. [7] 崔治军. 锦州25-1油田大位移井井眼净化技术研究[D]. 北京: 中国石油大学(北京), 2017.CUI Zhijun. Study on wellbore purification technology of large displacement well in JZ25-1 oilfield[D]. Beijing: China University of Petroleum(Beijing), 2017. [8] 徐四龙, 余维初, 张颖. 泥页岩井壁稳定的力学与化学耦合(协同)作用研究进展[J]. 石油天然气学报,2014,36(1):151-153. doi: 10.3969/j.issn.1000-9752.2014.01.032XU Silong, YU Weichu, ZHANG Ying. Research progress of mechanical and chemical coupling (synergistic) effects on wellbore stability of mud shale[J]. Journal of Oil and Gas Technology, 2014, 36(1):151-153. doi: 10.3969/j.issn.1000-9752.2014.01.032 [9] 祝春荣, 韦阿娟, 沈东义. 辽东湾地区锦州25-1油田油气成藏特点和运聚模拟研究[J]. 海洋石油,2011,31(3):17-22. doi: 10.3969/j.issn.1008-2336.2011.03.017ZHU Chunrong, WEI Ajuan, SHEN Dongyi. Pooling characteristics and hydrocarbon migration and accumulation modeling research in JZ25 - 1 oilfield in Liaodongwan area[J]. Offshore Oil, 2011, 31(3):17-22. doi: 10.3969/j.issn.1008-2336.2011.03.017 [10] 叶四桥, 陈雨爽, 曾彬, 等. 岩层厚度对砂泥岩水平互层岩体力学特性的影响[J]. 勘察科学技术,2021(1):1-5,15. doi: 10.3969/j.issn.1001-3946.2021.01.002YE Siqiao, CHEN Yushuang, ZENG Bin, et al. Influence of rock thickness on mechanical characteristics of horizontal interbedded of sandstone and mudstone[J]. Site Investigation Science and Technology, 2021(1):1-5,15. doi: 10.3969/j.issn.1001-3946.2021.01.002 [11] 张矿生, 欧阳勇, 谢江锋, 等. 天环坳陷页岩气井井壁失稳机理及防塌钻井液技术研究与应用[J]. 科学技术与工程,2022,22(29):12791-12799. doi: 10.3969/j.issn.1671-1815.2022.29.011ZHANG Kuangsheng, OU YANG Yong, XIE Jiangfeng, et al. Research and application of wellbore instability mechanism and anti-sloughing drilling fluid technology for shale gas wells in Tianhuan depression[J]. Science Technology and Engineering, 2022, 22(29):12791-12799. doi: 10.3969/j.issn.1671-1815.2022.29.011 [12] 蔚宝华, 闫传梁, 邓金根, 等. 锦州25-1油田井壁稳定问题[J]. 科技导报,2013,31(14):41-45. doi: 10.3981/j.issn.1000-7857.2013.14.006YU Baohua, YAN Chuanliang, DENG Jingen, et al. Wellbore stability problem of Jinzhou 25-1 oil field[J]. Science & Technology Review, 2013, 31(14):41-45. doi: 10.3981/j.issn.1000-7857.2013.14.006 [13] 金军斌, 张杜杰, 李大奇, 等. 顺北油气田深部破碎性地层井壁失稳机理及对策研究[J]. 钻采工艺,2023,46(1):42-49. doi: 10.3969/J.ISSN.1006-768X.2023.01.07JIN Junbin, ZHANG Dujie, LI Daqi, et al. Study on the wellbore instability mechanisms and drilling fluid countermeasures of deep fractured formation in Shunbei oil and gas field[J]. Drilling & Production Technology, 2023, 46(1):42-49. doi: 10.3969/J.ISSN.1006-768X.2023.01.07 [14] 刘晓东, 董昆, 沈哲. 屏蔽暂堵型储层保护钻开液在曹妃甸的应用[J]. 天津科技,2017,44(10):83-86. doi: 10.3969/j.issn.1006-8945.2017.10.022LIU Xiaodong, DONG Kun, SHEN Zhe. Application of shielding temporary-bridge reservoir protection drilling fluid in CFD oilfield[J]. Tianjin Science & Technology, 2017, 44(10):83-86. doi: 10.3969/j.issn.1006-8945.2017.10.022 [15] 张雪梅, 张贵磊, 严海源, 等. 合成基钻井液固相絮凝分离评价及应用[J]. 当代化工,2023,52(3):730-734. doi: 10.3969/j.issn.1671-0460.2023.03.046ZHANG Xuemei, ZHANG Guilei, YAN Haiyuan, et al. Evaluation and application of solid phase flocculation separation of synthetic base drilling fluid[J]. Contemporary Chemical Industry, 2023, 52(3):730-734. doi: 10.3969/j.issn.1671-0460.2023.03.046 [16] 彭三兵, 李斌, 韩东东, 等. BIODRILL S合成基钻井液在垦利区块首次应用[J]. 钻井液与完井液,2024,41(1):60-67. doi: 10.12358/j.issn.1001-5620.2024.01.006PENG Sanbing, LI Bin, HAN Dongdong, et al. First application of the synthetic-Based drilling fluid BIODRILL S in block Kenli of Bohai oilfield[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):60-67. doi: 10.12358/j.issn.1001-5620.2024.01.006 [17] 侯杰, 李浩东, 于兴东, 等. 松辽盆地陆相致密油井壁失稳机理及钻井液对策[J]. 钻井液与完井液,2021,38(5):598-604. doi: 10.12358/j.issn.1001-5620.2021.05.009HOU Jie, LI Haodong, YU Xingdong, et al. Mechanisms of borehole wall instability of terrestrial tight oil wells in Songliao basin and drilling fluid countermeasures[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):598-604. doi: 10.12358/j.issn.1001-5620.2021.05.009 [18] 王晨, 杨超, 贾未鸣, 等. 聚合物微球制备与复合体系封堵性能研究[J]. 当代化工,2023,52(4):858-861,866. doi: 10.3969/j.issn.1671-0460.2023.04.021WANG Chen, YANG Chao, JIA Weiming, et al. Preparation of polymer microspheres and plugging performance of microspheres based composite system[J]. Contemporary Chemical Industry, 2023, 52(4):858-861,866. doi: 10.3969/j.issn.1671-0460.2023.04.021 -