Wellbore Stability Technology of Fractured Carbonate Formation Drilling Fluid in Shunbei Region
-
摘要: 通过对顺北油气田碳酸盐岩地层的地质情况分析,明确了该地层井壁失稳的原因:一是地层井壁岩石易破碎且裂缝发育,极易发生裂缝二次发育、恶性漏失甚至井塌;二是井底温度高,钻井液处理剂易高温失效;三是现场聚磺钻井液的封堵能力不足,不能封堵地层裂隙、减少压力传递;四是现场钻井液的胶结能力不足,不能提高近井岩石的抗压强度。针对上述难点,以丙烯酰胺、二甲基二烯丙基氯化铵、2-丙烯酰胺-2-甲基丙磺酸钠、盐酸多巴胺等材料合成了一种抗高温胶结封堵剂AD-1。评价了胶结封堵剂AD-1的胶结性、封堵性以及对现场聚磺钻井液流变性能的影响,实验结果表明,180℃下,经过胶结的干态碳酸盐岩砂床单轴抗压强度为高达2.5~5.0 MPa,抗压强度提升了4倍以上;未胶结的湿态砂床抗压强度为0 MPa,经过胶结的湿态碳酸盐岩砂床单轴抗压强度提升至0.2~0.5 MPa;加入胶结封堵剂后,聚磺钻井液的封堵能力明显提高,钻井液能够封堵40~60、60~80目碳酸盐岩碎屑所堆砌的砂床,最大承压不小于6 MPa,30 min的累计漏失量在10 mL左右;胶结封堵剂AD-1添加量超过1.0%后黏度会剧烈增加,添加量需酌情控制。因此,以AD-1为核心的聚磺钻井液体系具有良好的抗温性、胶结性以及封堵性,可为顺北地区井壁稳定技术提供有力支撑。Abstract: Based on the geological analysis of the carbonate rock formation in Shunbei oil and gas field, the reasons for the formation's easy wellbore instability are clarified: first, the rock is easy to be broken and the fracture develops, which is easy to have secondary fracture development, malignant leakage and even well collapse; Second, the bottom hole temperature is high, and the drilling fluid treatment agent is easy to fail at high temperature; Third, the plugging capacity of the currently used polysulfonate drilling fluid is insufficient, which can’t effectively plug formation cracks and reduce pressure transfer; Fourth, the cementation ability of the current drilling fluid is insufficient, which can’t effectively improve the compressive strength of the near-wellbore rock. To solve the above difficulties, a high temperature resistant cementing sealer AD-1 was synthesized from acrylamide, dimethyldiallyl ammonium chloride, 2-acrylamide-2-methylpropanesulfonate sodium and dopamine hydrochloride. The cementation and plugging properties of the cementing agent were evaluated. The experimental results show that the axial compressive strength of the cemented dry carbonate sand beds is up to 2.5-5.0 MPa at 180℃, and the compressive strength is increased by more than 4 times. The compressive strength of the unconsolidated wet sand beds is 0 MPa, and the compressive strength of the consolidated wet carbonate sand beds is increased to 0.2-0.5 MPa. After adding the cementing sealer, the plugging ability of the polysulfonate drilling fluid was significantly improved, and the drilling fluid could effectively plug the sand beds composed of 40-60 and 60-80 mesh carbonate debris, with the maximum pressure ≥6 MPa, and the cumulative loss in 30 minutes was about 10 mL. In addition, the viscosity of the drilling fluid will increase dramatically when the additive amount exceeds 1.0%, and the additive amount should be controlled as appropriate. Therefore, the polysulfonate drilling fluid system with AD-1 as the core has good temperature resistance, cementation and plugging properties, which can provide strong technical support for borehole stability technology in Shunbei region.
-
表 1 全岩矿物X-射线衍射定量分析
编号 掉块 矿物含量/% 石英 斜长石 方解石 白云石 黏土矿物 1# 鳞片状 2.9 0 94.5 2.6 0 2# 不规则块状 2.1 0.5 92.9 4.5 0 3# 直径≥2 mm 2.6 0 93.5 3.9 0 4# 造斜处 3.2 0 93.3 3.5 0 5# 返稠浆时 3.7 0 94.0 2.3 0 6# 返稠浆、纤维时 4.2 0 91.7 4.1 0 表 2 聚磺钻井液的流变及滤失造壁性能
钻井液 AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) Gel/(Pa/Pa) FLAPI/mL FLHTHP/mL 现场聚磺钻井液(未老化) 60 45 15.30 0.3400 8/14 <1 8.4 现场聚磺钻井液(180℃、16 h) 47 36 11.22 0.3117 4/10 <1 16.0 现场聚磺钻井液+0.5%AD-1 75 55 20.40 0.3709 8/16 <1 13.0 现场聚磺钻井液+1.0%AD-1 83 58 25.50 0.4397 17/32 <1 11.2 表 3 封堵实验结果及外观
钻井液 30 min累计漏失量/mL 砂床状态 20~40目 40~60目 60~80目 现场聚磺钻井液
(未老化)大量漏失 13.0 5.0 松散
(破碎)现场聚磺钻井液
(180℃、16 h)大量漏失 20.0 14.0 松散
(破碎)现场聚磺
钻井液+0.5%AD-1大量漏失 10.5 6.2 坚实
(完整)现场聚磺
钻井液+1.0%AD-1大量漏失 5.2 3.2 坚实
(完整) -
[1] 刘文汇. 中国早古生代海相碳酸盐岩层系油气地质研究进展[J]. 矿物岩石地球化学通报,2019,38(5):871-880.LIU Wenhui. Advances in oil and gas geology of the early paleozoic Marine carbonate strata in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5):871-880. [2] 何登发,马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘,2019,26(1):1-12.HE Dengfa, MA Yongsheng, LIU Bo, et al. Main advances and key issues for deep-seated exploration in petroliferous basins in China[J]. Earth Science Frontiers, 2019, 26(1):1-12. [3] 何登发,贾承造, 赵文智,等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172. [4] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1-17. doi: 10.1016/S1876-3804(22)60001-6MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1):1-17. doi: 10.1016/S1876-3804(22)60001-6 [5] 金军斌,张杜杰,李大奇,等. 顺北油气田深部破碎性地层井壁失稳机理及对策研究[J]. 钻采工艺,2023,46(1):42-49.JIN Junbin, ZHANG Dujie, LI Daqi, et al. Study on the wellbore instability mechanisms and drilling fluid countermeasures of deep fractured formation in Shunbei oil and gas field[J]. Drilling & Production Technology, 2023, 46(1):42-49. [6] 金军斌,欧彪,张杜杰,等. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望[J]. 长江大学学报(自然科学版),2021,18(6):47-54.JIN Junbin, OU Biao, ZHANG Dujie, et al. Research status and prospect of borehole stability technology in deepfractured carbonate reservoirs[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6):47-54. [7] 王伟吉,李大奇,金军斌, 等. 顺北油气田破碎性地层井壁稳定技术难题与对策[J]. 科学技术与工程,2022,22(13):5205-5212.WANG Weiji, LI Daqi, JIN Junbin, et al. Technical problems and measures of wellbore stability of broken formation in Shunbei oil and gas field[J]. Science Technology and Engineering, 2022, 22(13):5205-5212. [8] 张亚云,李大奇, 高书阳, 等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田,2022,29(2):256-260.ZHANG Yayun, LI Daqi, GAO Shuyang, et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei oil and gas field[J]. Fault-Block Oil and Gas Field, 2022, 29(2):256-260. [9] HAN L, YAN L, WANG K, et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality[J]. NPG Asia Materials, 2017, 9(4):e372. doi: 10.1038/am.2017.33 [10] 王丹. 儿茶酚基团接枝高分子的合成及黏合性能研究[D]. 长春: 长春理工大学, 2019.WANG Dan. Synthesis and adhesion properties of polymers grafted with catechol groups[D]. Changchun: Changchun University of Science and Technology, 2019. [11] ZHANG C, XIANG L, ZHANG J W, et al. Revisiting the adhesion mechanism of mussel-inspired chemistry[J]. Chemical Science, 2022, 13(6):1698-1705. doi: 10.1039/D1SC05512G [12] FAN H L, WANG J H, GONG J P. Barnacle cement proteins‐inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion[J]. Advanced Functional Materials, 2021, 31(11):2009334. doi: 10.1002/adfm.202009334 [13] 贺武,帅韬,高明阳,等. 聚多巴胺形成的机理及影响因素[J]. 江西化工,2017(4):4-10. doi: 10.3969/j.issn.1008-3103.2017.04.002HE Wu, SHUAI Tao, GAO Mingyang, et al. Mechanism and influencing factors for the formation of polydopamine[J]. Jiangxi Chemical Industry, 2017(4):4-10. doi: 10.3969/j.issn.1008-3103.2017.04.002 [14] 付一夫. 水下黏合剂的制备与应用[D]. 南京: 东南大学, 2020.FU Yifu. Preparation and application of underwater adhesive[D]. Nanjing: Southeastern University, 2020. [15] 苏晓明,练章华,方俊伟,等. 适用于塔中区块碳酸盐岩缝洞型异常高温高储集层的钻井液承压堵漏材料[J]. 石油勘探与开发,2019,46(1):165-172.SU Xiaoming, LIAN Zhanghua, FANG Junwei, et al. Lost circulation material for abnormally high temperature and pressure fractured-vuggy carbonate reservoirs in Tazhong block, Tarim basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1):165-172. [16] 闫永生. 破碎带堵漏树脂凝胶材料的评价及改性[D]. 北京: 中国地质大学(北京), 2020.YAN Yongsheng. Evaluation and modification of resin gel plugging materials in fracture zone[D]. Beijing: China University of Geosciences(Beijing), 2020. [17] 庄伟,金子大作,姜越, 等. 没食子酸-己内酯共聚物的制备与水下黏附性能研究[J]. 应用化工,2022,51(6):1637-1641.ZHUANG Wei, JIN Zi dazuo, JIANG Yue, et al. Study on preparation of gallic acid-caprolactone copolymer and its underwater adhesion performance[J]. Applied Chemical Industry, 2022, 51(6):1637-1641. [18] 陈一明,李慧颖,倪鹏,等. 含儿茶酚基团的湿态组织黏附水凝胶[J]. 化学进展,2023,35(4):560-576.CHEN Yiming, LI Huiying, NI Peng, et al. Catechol hydrogel as wet tissue adhesive[J]. Progress in Chemistry, 2023, 35(4):560-576. [19] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22. [20] 林永学,王伟吉, 金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113-120.LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3):113-120. [21] 陈宗琦, 刘湘华, 白彬珍, 等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1-10.CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei oil & gas field[J]. Petroleum Drilling Techniques, 2022, 50(4):1-10. [22] 陈修平,李双贵,于洋, 等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术,2020,48(2):12-16. doi: 10.11911/syztjs.2020005CHEN Xiuping, LI Shuanggui, YU Yang, et al. Anti-Collapse drilling fluid technology for broken carbonate formation in Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(2):12-16. doi: 10.11911/syztjs.2020005 [23] 郭凯. 东海X区块大位移井提高井壁稳定性技术优化[J]. 化工管理,2023(34):161-164.GUO Kai. Optimization of oil-based mud in an extended reach well in the east China sea[J]. Chemical Enterprise Management, 2023(34):161-164. [24] 孙翀, 周定照,王涛,等. YH7 井钻井液煤层井壁稳定技术研究及应用[J]. 石油化工应用,2023,42(5):20-22. doi: 10.3969/j.issn.1673-5285.2023.05.005SUN Chong, ZHOU Dingzhao, WANG Tao, et al. Research and application on coal seam wall stabilization technology of drilling fluid in YH7 well[J]. Petrochemical Industry Application, 2023, 42(5):20-22. doi: 10.3969/j.issn.1673-5285.2023.05.005 -