Visual Experimental Study on Evolution and Particle’s Characteristic Behavior of Plugging Layers inside Fractured Loss Zones
-
摘要: 裂缝性漏失成为不稳定地层条件下钻井过程中面临的最困难问题之一。桥接堵漏方法是裂缝性漏失控制的最有效方式。传统裂缝实验装置对裂缝内以颗粒流所形成封堵层的机理仍不明确,制约了堵漏浆体系配方的科学构建。为了探究颗粒的特征行为和裂缝内封堵层的动态演化过程,建立了井筒-裂缝可视化实验装置,系统研究了颗粒粒径、浓度、泵入速度、流体黏度等关键因素下颗粒的行为特征、封堵层形成规律以及影响机制。实验结果表明,裂缝内封堵过程可以分为4个阶段,每个阶段中同时存在颗粒混合行为和特征行为的转换。裂缝的封堵层构建位置对颗粒粒径具有很高的敏感性,颗粒的浓度影响着裂缝的封堵时间,流体的黏度容易改变裂缝内的封堵结构以及过高的泵速会破坏原有形成的封堵结构。Abstract: Mud losses into fractures is one of the most difficult problems encountered in drilling unstable formations. Particle bridging is the most effective method of controlling mud losses into fractures. In traditional fracture experimental apparatus how the plugging layers are formed inside the fractures by the flow of particles is still not clearly understood, and this restricts the scientific build-up of a lost circulation slurry. To investigate the characteristic behavior of particles and the dynamic evolution of plugging layers inside fractures, a wellbore-fracture visualization experimental device is set up, and is used to systematically study the behavioral characteristics of the particles, the pattern in which the plugging layers are formed as well as the influencing mechanisms of the formation of the plugging layers under the effects of key factors such as particle size, particle concentration, flowrate of the particle slurry pumped into the fractures and the viscosity of the carrying fluid etc. The experimental results show that the plugging process taking place inside the fractures can be divided into four stages in each of which co-exist the mixing of the particles and the change of the characteristic behavior of the particles. The position at which a plugging layer is set up is highly sensitive to the size distribution of the particles, the concentration of the particles affects the time required for the fractures to be plugged, the structure of the plugging layers is easily altered by the viscosity of the carrying fluid, and too high a pump rate may damage the plugging structure previously formed.
-
表 1 实验所用携带液的流变性能
黄原胶/% AV/mPa·s PV/mPa·s YP/Pa φ6/φ3 0.2 6.0 5 1.0 0/0 0.4 15.5 9 6.5 2/1 0.6 27.0 11 16.0 6/4 0.8 45.0 17 28.0 16/11 -
[1] 吕开河, 王晨烨, 雷少飞, 等. 裂缝性地层钻井液漏失规律及堵漏对策[J]. 中国石油大学学报(自然科学版),2022,46(2):85-93.LYU Kaihe, WANG Chenye, LEI Shaofei, et al. Dynamic behavior and mitigation methods for drilling fluid loss in fractured formations[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(2):85-93. [2] 贾印露. 大庆油田深部地层防漏堵漏技术现状[J]. 西部探矿工程,2021,33(3):85-86,90. doi: 10.3969/j.issn.1004-5716.2021.03.028JIA Yinlu. Current status of leakage prevention and plugging technology in deep formations in Daqing oilfield[J]. West-China Exploration Engineering, 2021, 33(3):85-86,90. doi: 10.3969/j.issn.1004-5716.2021.03.028 [3] 郭天魁, 王云鹏, 陈铭, 等. 基于孔弹性效应的水平井多簇压裂诱导应力及裂缝扩展分析[J]. 天然气工业,2023,43(10):64-72.GUO Tiankui, WANG Yunpeng, CHEN Ming, et al. Analysis of stress induced by multi-cluster fracturing in horizontal wells and fracture propagation condiering poroelastic effect[J]. Natural Gas Industry, 2023, 43(10):64-72. [4] 孙金声, 杨景斌, 白英睿, 等. 裂缝性地层桥接堵漏技术发展综述与展望[J]. 石油科学通报,2023,8(4):415-431. doi: 10.3969/j.issn.2096-1693.2023.04.032SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Review and prospect of bridging plugging technology in fractured formation[J]. Petroleum Science Bulletin, 2023, 8(4):415-431. doi: 10.3969/j.issn.2096-1693.2023.04.032 [5] 张鹏. 钻井液堵漏材料与防漏堵漏技术[J]. 中国石油和化工标准与质量,2023,43(5):164-166. doi: 10.3969/j.issn.1673-4076.2023.05.056ZHANG Peng. Drilling fluid plugging materials and leakage prevention and plugging technology[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(5):164-166. doi: 10.3969/j.issn.1673-4076.2023.05.056 [6] 马成云, 窦益华, 邓金根, 等. 动态裂缝堵漏试验装置的研制与应用[J]. 石油机械,2023,51(12):25-30.MA Chengyun, DOU Yihua, DENG Jingen, et al. Development and application of dynamic fracture plugging test device[J]. China Petroleum Machinery, 2023, 51(12):25-30. [7] 于雷, 李公让, 王宝田, 等. 一种新型亲油纤维堵漏剂的研发[J]. 天然气工业,2023,43(6):112-118.YU Lei, LI Gongrang, WANG Baotian, et al. Research and development of a new type of oleophilic fiber plugging agents[J]. Natural Gas Industry, 2023, 43(6):112-118. [8] 王心龙. 裂缝型漏层玄武岩纤维堵漏泥浆优选及其作用机理研究[D]. 长沙: 中南大学, 2022.WANG Xinlong. Study on optimization and mechanism of basalt fiber plugging mud in fracture leakage layer[D]. Changsha: Central South University, 2022. [9] 赵巍, 李波, 高云文, 等. 诱导性裂缝防漏堵漏钻井液研究[J]. 油田化学,2013,30(1):1-4.ZHAO Wei, LI Bo, GAO Yunwen, et al. Study of lost circulation protection and control drilling fluid for induced cracks[J]. Oilfield Chemistry, 2013, 30(1):1-4. [10] 林四元, 卢运虎, 张立权. 琼东南盆地高温高压井强承压堵漏技术[J]. 钻井液与完井液,2023,40(3):363-367. doi: 10.12358/j.issn.1001-5620.2023.03.012LIN Siyuan, LU Yunhu, ZHANG Liquan. Mud loss control technology in Qiongdongnan basin under high temperature and high pressure bearing conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):363-367. doi: 10.12358/j.issn.1001-5620.2023.03.012 [11] 吴江, 李炎军, 张万栋, 等. 高温高压地层漏失控制技术研究与应用[J]. 油田化学,2021,38(2):204-209.WU Jiang, LI Yanjun, ZHANG Wandong, et al. Research and application of leakage control technology in the formation with high temperature and high pressure[J]. Oilfield Chemistry, 2021, 38(2):204-209. [12] 杨超. 高温高压堵漏室内模拟系统研究[D]. 北京: 中国石油大学(北京), 2016.YANG Chao. High temperature and high pressure indoor plugging simulation system research[D]. Beijing: China University of Petroleum(Beijing), 2016. [13] 郭明红, 张克正, 吕东华, 等. 两段式桥堵增效技术在南堡27-平201井应用[J]. 钻井液与完井液,2022,39(2):180-184. doi: 10.12358/j.issn.1001-5620.2022.02.008GUO Minghong, ZHANG Kezheng, LYU Donghua, et al. Application of two-stage strengthened bridging technique in well Nanpu27-Ping201[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):180-184. doi: 10.12358/j.issn.1001-5620.2022.02.008 [14] 熊战, 王合林, 张民立, 等. 仙西2井漏失性质分析及堵漏方式探讨[J]. 钻井液与完井液,2020,37(3):319-326. doi: 10.3969/j.issn.1001-5620.2020.03.009XIONG Zhan, WANG Helin, ZHANG Minli, et al. Mud losses in well Xianxi-2: characteristics and control[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):319-326. doi: 10.3969/j.issn.1001-5620.2020.03.009 [15] 冯一. 封堵颗粒在井周裂缝中的运移机理研究[D]. 成都: 西南石油大学, 2019.FENG Yi. Plugging particles transport mechanism in near-wellbore fracture: an experimental and numerical simulation study[D]. Chengdu: Southwest Petroleum University, 2019. [16] 王凯. 致密砂岩油藏水力单裂缝弱凝胶逐级调驱机理研究[D]. 青岛: 中国石油大学(华东), 2020.WANG Kai. Mechanism of progressively blocking hydraulic single fractures with weak gel in tight sandstone reservoirs[D]. Qingdao: China University Of Petroleum, 2020. [17] 郭建春, 詹立, 路千里, 等. 暂堵颗粒在水力裂缝中的封堵行为特征[J]. 石油勘探与开发,2023,50(2):409-415. doi: 10.11698/PED.20220474GUO Jianchun, ZHAN Li, LU Qianli, et al. Plugging behaviors of temporary plugging particles in hydraulic fractures[J]. Petroleum Exploration and Development, 2023, 50(2):409-415. doi: 10.11698/PED.20220474 [18] XU C Y, ZHANG H L, SHE J P, et al. Experimental study on fracture plugging effect of irregular-shaped lost circulation materials[J]. Energy, 2023, 276:127544. doi: 10.1016/j.energy.2023.127544 [19] 张敬逸. 粗糙缝面裂缝内固相颗粒运移与滞留行为研究[D]. 成都: 西南石油大学, 2018.ZHANG Jingyi. Study on the transport and capture of particles in roughness fractures[D]. Chengdu: Southwest Petroleum University, 2018. [20] 冯佳歆, 李皋, 李睿, 等. 基于CFD-DEM方法天然裂缝内颗粒架桥机理研究[C]//第33届全国天然气学术年会(2023)论文集(02气藏开发). 广西 南宁, 2023: 773-782.FENG Jiaxin, LI Gao, LI Rui, et al. Research on particle bridging mechanism in natural fractures based on CFD-DEM method[C]//Proceedings of the 33rd National Natural Gas Academic Annual Conference (2023) (02 Gas Reservoir Development). Nanning Guangxi, 2023: 773-782. [21] 周朗, 林然, 周小金, 等. 页岩气水平井段内多簇缝口暂堵转向压裂数值模拟[J]. 钻采工艺,2023,46(4):82-87. doi: 10.3969/J.ISSN.1006-768X.2023.04.14ZHOU Lang, LIN Ran, ZHOU Xiaojin, et al. Numerical simulation research on diverting fracturing for staged fracturing horizontal well in shale gas reservoir[J]. Drilling & Production Technology, 2023, 46(4):82-87. doi: 10.3969/J.ISSN.1006-768X.2023.04.14 -