留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地东缘海陆过渡相页岩气层应力敏感实验

李兵 甯冼逸 朱卫平 陈明君 何朋勃 康毅力 赖哲涵

李兵,甯冼逸,朱卫平,等. 鄂尔多斯盆地东缘海陆过渡相页岩气层应力敏感实验[J]. 钻井液与完井液,2025,42(1):30-40 doi: 10.12358/j.issn.1001-5620.2025.01.003
引用本文: 李兵,甯冼逸,朱卫平,等. 鄂尔多斯盆地东缘海陆过渡相页岩气层应力敏感实验[J]. 钻井液与完井液,2025,42(1):30-40 doi: 10.12358/j.issn.1001-5620.2025.01.003
LI Bing, NING Xianyi, ZHU Weiping, et al.Stress sensitivity experiment on shale gas formations in marine-continental transitional facies in easten margin of Ordos basin[J]. Drilling Fluid & Completion Fluid,2025, 42(1):30-40 doi: 10.12358/j.issn.1001-5620.2025.01.003
Citation: LI Bing, NING Xianyi, ZHU Weiping, et al.Stress sensitivity experiment on shale gas formations in marine-continental transitional facies in easten margin of Ordos basin[J]. Drilling Fluid & Completion Fluid,2025, 42(1):30-40 doi: 10.12358/j.issn.1001-5620.2025.01.003

鄂尔多斯盆地东缘海陆过渡相页岩气层应力敏感实验

doi: 10.12358/j.issn.1001-5620.2025.01.003
基金项目: 中国石油天然气股份有限公司“十四五”前瞻性基础性技术攻关项目“海陆过渡相页岩气储层改造技术研究”(2021DJ2004);四川省自然科学基金项目“渗吸压裂液作用下页岩储层纳米限域空间吸附气产出机理研究”(2023NSFSC0939)。
详细信息
    作者简介:

    李兵,工程师,1992年生,主要从事煤层气、致密气、页岩气储层改造等方向的研究工作。E-mail:371618825@qq.com

    通讯作者:

    陈明君,副教授,博士(后),1988年生,主要从事储层保护理论与技术、非常规天然气开发等方向的科研与教学工作。E-mail:chenmj1026@163.com

  • 中图分类号: TE258

Stress Sensitivity Experiment on Shale Gas Formations in Marine-Continental Transitional Facies in Easten Margin of Ordos Basin

  • 摘要: 鄂尔多斯盆地东缘海陆过渡相页岩气层致密,孔缝结构复杂,非均质性强,导致应力敏感具有特殊性。选取鄂尔多斯盆地东缘海陆过渡相页岩样品,开展了不同有效应力下的岩心应力敏感实验,明确了储层应力敏感程度,并结合储层岩性和物性特征,揭示了研究区海陆过渡相页岩气层应力敏感机理。研究结果表明,有效应力从3 MPa增大至35 MPa时,人工裂缝、天然裂缝和基块岩心的渗透率分别降低了97.1%、86.8%和50.5%。有效应力卸载过程中,渗透率恢复率分别为21.4%、19.0%和11.6%,表现出显著的应力敏感滞后效应。人工裂缝、天然裂缝和基块页岩的应力敏感系数分别为0.65、0.58和0.19,应力敏感程度分别为强~中等偏强、强~中等偏弱和弱,表明研究区页岩多尺度孔缝结构的应力敏感显著。海陆过渡相页岩矿物组分、裂缝发育程度和孔隙结构是应力敏感损害的主控因素,建议制定保护储层的采气工艺制度,通过控压生产,保障气井高产和稳产。

     

  • 图  1  海陆过渡相页岩渗透率与有效应力的关系曲线

    图  2  海陆过渡相页岩无因次渗透率随有效应力变化曲线

    图  3  海陆过渡相页岩应力敏感系数评价

    图  4  海陆过渡相页岩全岩及黏土矿物组分测试结果

    图  5  海陆过渡相页岩应力敏感与初始物性的关系

    图  6  海陆过渡相页岩储层样品岩石薄片特征

    表  1  应力敏感实验岩心基础数据

    岩样 深度/
    m
    长度/
    cm
    直径/
    cm
    体积/
    cm3
    备注
    HLY-1 2366.00~2372.77 5.09 2.54 25.99 人工裂缝
    HLY-2 2347.10~2351.10 5.04 2.54 25.54 人工裂缝
    HLY-3 2347.10~2351.10 5.05 2.54 25.79 天然裂缝
    HLD-1 1945.50~1949.50 5.07 2.54 24.89 天然裂缝
    YL-1 2437.40 5.02 2.54 25.64 天然裂缝
    HLD-2 1945.50~1949.50 5.10 2.54 26.05 基块
    HLD-3 1945.50~1949.50 5.08 2.54 25.94 基块
    HLD-4 1945.50~1949.50 5.10 2.54 25.44 基块
    YL-2 4.99 2.54 25.28 基块
    HLY-5 2347.10~2351.10 5.04 2.54 25.54 基块
    下载: 导出CSV

    表  2  应力敏感程度评价指标

    应力敏感
    系数
    应力敏感
    损害程度
    应力敏感
    系数
    应力敏感
    损害程度
    SS<0.05 0.5≤SS<0.7 中等偏强
    0.05≤SS<0.3 0.7≤SS<1
    0.3≤SS<0.5 中等偏弱 SS>1 极强
    下载: 导出CSV

    表  3  海陆过渡相页岩应力敏感程度评价结果

    样号L/
    mm
    D/
    mm
    Kmax/
    mD
    Kmin/
    mD
    SS应力敏感
    程度
    备注
    HLY-150.925.410.9300.0700.80人工裂缝
    HLY-250.425.432.5800.7200.65中等偏强人工裂缝
    HLD-150.725.47.5702.9600.36中等偏弱天然裂缝
    YL-150.225.43.6300.1100.58中等偏强天然裂缝
    HLY-350.825.45.5400.0500.79天然裂缝
    HLD-251.025.40.0080.0060.07基块
    HLY-550.425.40.0090.0040.19基块
    HLD-350.825.40.0070.0030.24基块
    YL-249.925.40.00080.00040.24基块
    HLD-451.025.40.3280.0960.29基块
    下载: 导出CSV
  • [1] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587.

    ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4):575-587.
    [2] 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业,2021,41(8):69-80.

    ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8):69-80.
    [3] 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质,2022,43(5):1013-1023.

    GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the carboniferous-permian coal measure strata, Ordos basin[J]. Oil & Gas Geology, 2022, 43(5):1013-1023.
    [4] 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29-45.

    DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1):29-45.
    [5] 匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435-446.

    KUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3):435-446.
    [6] 刘洪林, 王怀厂, 张辉, 等. 鄂尔多斯盆地东部山西组页岩气成藏特征及勘探对策[J]. 地质学报,2020,94(3):905-915.

    LIU Honglin, WANG Huaichang, ZHANG Hui, et al. Geological characteristics and exploration countermeasures of shale gas in the Shanxi formation of the Ordos basin[J]. Acta Geologica Sinica, 2020, 94(3):905-915.
    [7] 欧阳伟平, 孙贺东, 张冕. 考虑应力敏感的致密气多级压裂水平井试井分析[J]. 石油学报,2018,39(5):570-577.

    OU YANG Weiping, SUN Hedong, ZHANG Mian. Well test analysis for multistage fractured horizontal wells in tight gas reservoir considering stress sensitivity[J]. Acta Petrolei Sinica, 2018, 39(5):570-577.
    [8] 姜瑞忠, 何吉祥, 姜宇, 等. 页岩气藏压裂水平井Blasingame产量递减分析方法建立与应用[J]. 石油学报,2019,40(12):1503-1510.

    JIANG Ruizhong, HE Jixiang, JIANG Yu, et al. Establishment and application of Blasingame production decline analysis method for fractured horizontal well in shale gas reservoirs[J]. Acta Petrolei Sinica, 2019, 40(12):1503-1510.
    [9] 王香增, 冯东, 李相方, 等. 考虑时变效应的致密气井产能评价--以延安气田为例[J]. 石油学报, 2019, 40(11): 1358-1367.

    WANG Xiangzeng, FENG Dong, LI Xiangfang, et al. Productivity evaluation of tight gas well with time dependent mechanism: a case study of Yan'an gasfield[J]. Acta Petrolei Sinica, 2019, 40(11): 1358-1367.
    [10] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学,2018,29(6):845-852.

    ZHU Weiyao, MA Dongxu. Effective stress characteristics in shale and its effect on productivity[J]. Natural Gas Geoscience, 2018, 29(6):845-852.
    [11] 田冷, 肖聪, 顾岱鸿. 考虑应力敏感与非达西效应的页岩气产能模型[J]. 天然气工业,2014,34(12):70-75.

    TIAN Leng, XIAO Cong, GU Daihong. A shale gas reservoir productivity model considering stress sensitivity and non-Darcy flow[J]. Natural Gas Industry, 2014, 34(12):70-75.
    [12] 李一波, 何天双, 胡志明, 等. 页岩油藏提高采收率技术及展望[J]. 西南石油大学学报(自然科学版),2021,43(3):101-110.

    LI Yibo, HE Tianshuang, HU Zhiming, et al. A comprehensive review of enhanced oil recovery technologies for shale oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3):101-110.
    [13] 李晓平, 刘蜀东, 李纪, 等. 考虑应力敏感效应和含水影响的页岩基质表观渗透率模型[J]. 天然气地球科学,2021,32(6):861-870.

    LI Xiaoping, LIU Shudong, LI Ji, et al. Apparent gas permeability model of shale matrix coupling stress sensitivity and water saturation[J]. Natural Gas Geoscience, 2021, 32(6):861-870.
    [14] 康毅力, 李潮金, 游利军, 等. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学,2020,31(4):532-541.

    KANG Yili, LI Chaojin, YOU Lijun, et al. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim basin[J]. Natural Gas Geoscience, 2020, 31(4):532-541.
    [15] 肖文联, 李闽, 赵金洲, 等. 低渗致密砂岩渗透率应力敏感性试验研究[J]. 岩土力学,2010,31(3):775-779.

    XIAO Wenlian, LI Min, ZHAO Jinzhou, et al. Laboratory study of stress sensitivity to permeability in tight sandstone[J]. Rock and Soil Mechanics, 2010, 31(3):775-779.
    [16] 张少杰. 页岩油藏应力敏感及渗流特征研究[D]. 青岛: 中国石油大学(华东), 2017.

    ZHANG Shaojie. Stress sensitivity and flow characteristics of shale oil reservoirs[D]. Qingdao: China University of Petroleum(East China), 2017.
    [17] 罗瑞兰, 程林松, 彭建春, 等. 确定低渗岩心渗透率随有效覆压变化关系的新方法[J]. 中国石油大学学报(自然科学版),2007,31(2):87-90.

    LUO Ruilan, CHENG Linsong, PENG Jianchun, et al. A new method of determining relationship between permeability and effective overburden pressure for low-permeability reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(2):87-90.
    [18] 徐新丽. 含微裂缝低渗储层应力敏感性及其对产能影响[J]. 特种油气藏,2015,22(1):127-130.

    XU Xinli. Stress sensitivity of low-permeability reservoir containing micro-fracture and its influence on productivity[J]. Special Oil & Gas Reservoirs, 2015, 22(1):127-130.
    [19] 赵伦, 陈烨菲, 宁正福, 等. 异常高压碳酸盐岩油藏应力敏感实验评价——以滨里海盆地肯基亚克裂缝-孔隙型低渗透碳酸盐岩油藏为例[J]. 石油勘探与开发,2013,40(2):194-200.

    ZHAO Lun, CHEN Yefei, NING Zhengfu, et al. Stress sensitive experiments for abnormal overpressure carbonate reservoirs: a case from the Kenkiyak low-permeability fractured-porous oilfield in the littoral Caspian basin[J]. Petroleum Exploration and Development, 2013, 40(2):194-200.
    [20] YANG Y, LIU Z, SUN Z, et al. Research on stress sensitivity of fractured carbonate reservoirs based on CT technology[J]. Energies, 2017, 10(11):1833.
    [21] 刘仁静, 刘慧卿, 张红玲, 等. 低渗透储层应力敏感性及其对石油开发的影响[J]. 岩石力学与工程学报,2011,30(Z1):2697-2702.

    LIU Renjing, LIU Huiqing, ZHANG Hongling, et al. Study of stress sensitivity and its influence on oil development in low permeability reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Z1):2697-2702.
    [22] 赵龙梅, 文桂华, 李星涛, 等. 鄂尔多斯盆地大宁-吉县区块山西组2~3亚段致密砂岩气储层“甜点区”评价[J]. 天然气工业,2018(S1):5-10.

    ZHAO Longmei, WEN Guihua, LI Xingtao, et al. Evaluation of “sweet spot” tight sandstone gas reservoirs in the 2nd-3rd sub-member of the Shanxi formation, Daning-Jixian block, Ordos basin[J]. Natural Gas Industry, 2018(S1):5-10.
    [23] 李五忠, 陈刚, 孙斌, 等. 大宁-吉县地区煤层气成藏条件及富集规律[J]. 天然气地球科学,2011,22(2):352-360.

    LI Wuzhong, CHEN Gang, SUN Bin, et al. Geological controls of coalbed methane enrichment in Daning-Jixian area, southeastern Ordos basin[J]. Natural Gas Geoscience, 2011, 22(2):352-360.
    [24] 田雯. 鄂尔多斯盆地东南部二叠系山西组沉积体系研究[D]. 西安: 西北大学, 2016.

    TIAN Wen. Sedimentary system study of permian Shaanxi formation in south-eastern of Ordos basin[D]. Xi'an: Northwest University, 2016.
    [25] 田夏荷. 鄂尔多斯盆地东部本溪组-山西组致密气储层分类评价研究[D]. 西安: 西北大学, 2016.

    TIAN Xiahe. Research on tight gas reservoirs evaluationand classifcation of Benxi formation-Shanxi formation in eastern Ordos basin[D]. Xi'an: Northwest University, 2016.
    [26] 兰朝利, 郭伟, 王奇, 等. 鄂尔多斯盆地东部二叠系山西组页岩气成藏条件与有利区筛选[J]. 地质学报,2016,90(1):177-188.

    LAN Chaoli, GUO Wei, WANG Qi, et al. Shale gas accumulation condition and favorable area optimization of the permian Shanxi formation, eastern Ordos basin[J]. Acta Geologica Sinica, 2016, 90(1):177-188.
    [27] 张琴, 邱振, 张磊夫, 等. 海陆过渡相页岩气储层特征与主控因素 ——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学,2022,33(3):396-407.

    ZHANG Qin, QIU Zhen, ZHANG Leifu, et al. Reservoir characteristics and its influence on transitional shale: an example from permian Shanxi formation shale, Daning-Jixian blocks, Ordos basin[J]. Natural Gas Geoscience, 2022, 33(3):396-407.
    [28] 康毅力, 赖哲涵, 陈明君, 等. 基于压力衰减法的页岩气体扩散系数应力敏感性实验[J]. 天然气工业,2022,42(2):59-70.

    KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Stress sensitivity experiments of shale gas diffusion coefficients based on the pressure decay method[J]. Natural Gas Industry, 2022, 42(2):59-70.
    [29] 康毅力, 赖哲涵, 陈明君, 等. 页岩储层应力敏感性的时间效应[J]. 西南石油大学学报(自然科学版),2024,46(1):53-63.

    KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Time effects of stress sensitivity in shale reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1):53-63.
    [30] 兰林, 康毅力, 陈一健, 等. 储层应力敏感性评价实验方法与评价指标探讨[J]. 钻井液与完井液,2005,22(3):1-4.

    LAN Lin, KANG Yili, CHEN Yijian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3):1-4.
    [31] BERNABE Y. The effective pressure law for permeability in Chelmsford granite and Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3):267-275.
    [32] 孙军昌, 杨正明, 魏国齐, 等. 不同孔隙类型火山岩储层渗透率应力敏感特征[J]. 岩土力学,2012,33(12):3577-3584.

    SUN Junchang, YANG Zhengming, WEI Guoqi, et al. Characterization of stress-dependent permeability of volcanic gas reservoir of different types of pore structure[J]. Rock and Soil Mechanics, 2012, 33(12):3577-3584.
    [33] 曹耐, 雷刚. 致密储集层加压-卸压过程应力敏感性[J]. 石油勘探与开发,2019,46(1):132-138.

    CAO Nai, LEI Gang. Stress sensitivity of tight reservoirs during pressure loading and unloading process[J]. Petroleum Exploration and Development, 2019, 46(1):132-138.
    [34] 代平. 低渗透应力敏感油藏实验及数值模拟研究[D]. 成都: 西南石油大学, 2006.

    DAI Ping. The experiment and numerical simulation research on low-permeability reservoir[D]. Chengdu: Southwest Petroleum University, 2006.
    [35] CHEN M, KANG Y, ZHANG T, et al. Shale gas transport behavior considering dynamic changes in effective flow channels[J]. Energy Science Engineering, 2019, 7(5):2059-2076.
    [36] 张浩, 康毅力, 陈一健, 等. 致密砂岩油气储层岩石变形理论与应力敏感性[J]. 天然气地球科学,2004,15(5):482-486.

    ZHANG Hao, KANG Yili, CHEN Yijian, et al. Deformation theory and stress sensitivity of tight sandstones reserviors[J]. Natural Gas Geoscience, 2004, 15(5):482-486.
    [37] CHEN X, YU J, TANG C, et al. Deformation theory and stress sensitivity of tight sandstones reserviors[J]. Rock Mechanics and Rock Engineering, 2017, 50(6):1529-1549.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  45
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-18
  • 修回日期:  2024-10-24
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回