Stress Sensitivity Experiment on Shale Gas Formations in Marine-Continental Transitional Facies in Easten Margin of Ordos Basin
-
摘要: 鄂尔多斯盆地东缘海陆过渡相页岩气层致密,孔缝结构复杂,非均质性强,导致应力敏感具有特殊性。选取鄂尔多斯盆地东缘海陆过渡相页岩样品,开展了不同有效应力下的岩心应力敏感实验,明确了储层应力敏感程度,并结合储层岩性和物性特征,揭示了研究区海陆过渡相页岩气层应力敏感机理。研究结果表明,有效应力从3 MPa增大至35 MPa时,人工裂缝、天然裂缝和基块岩心的渗透率分别降低了97.1%、86.8%和50.5%。有效应力卸载过程中,渗透率恢复率分别为21.4%、19.0%和11.6%,表现出显著的应力敏感滞后效应。人工裂缝、天然裂缝和基块页岩的应力敏感系数分别为0.65、0.58和0.19,应力敏感程度分别为强~中等偏强、强~中等偏弱和弱,表明研究区页岩多尺度孔缝结构的应力敏感显著。海陆过渡相页岩矿物组分、裂缝发育程度和孔隙结构是应力敏感损害的主控因素,建议制定保护储层的采气工艺制度,通过控压生产,保障气井高产和稳产。Abstract: The shale gas formations in the marine-continental transitional facies of the eastern margin of the Ordos Basin are tight gas formations with complex pore and fracture structures as well as high heterogeneity which result in special stress sensitivity of the formations. To understand the degree of the stress sensitivity of the reservoirs, stress sensitivity experiments were performed on cores taken from the marine-continental transitional facies of the eastern margin of the Ordos Basin. The experimental results, combined with the understanding of the lithology and the physical properties of the reservoirs, help reveal the mechanisms of stress sensitivity of the shale gas reservoirs concerned. The studies performed indicate that when the effective stress is increased from 3 MPa to 35 MPa, the permeability of the artificial fractures, the natural fractures and the base core decreases by 97.1%, 86.8% and 50,5%, respectively. During unloading of the effective stress, the permeability of the artificial fractures, the natural fractures and the base core is recovered by 21.4%, 19.0% and 11.6%, respectively, showing significant stress sensitivity hysteresis effects. The stress sensitivity coefficients of the artificial fractures, the natural fractures and the base core are 0.65, 0.58 and 0.19, respectively, and the degrees of stress sensitivity corresponding to these stress sensitivity coefficients are classified as strong-moderate to strong, strong-moderate to weak and weak. The stress sensitivity coefficients show that the multi-scale pore-fracture structure of the shales under research have significant stress sensitivity. The main control factors of formation damage by stress sensitivity include the mineral components, the development of the fractures as well as the pore structure of the shales in the marine-continental transitional facies. It is thus suggested that a reservoir-protective gas production system be developed, and the production of gas be controlled to ensure high production rate and stable production of the gas wells drilled in the marine-continental transitional facies of the eastern margin of the Ordos Basin.
-
表 1 应力敏感实验岩心基础数据
岩样 深度/
m长度/
cm直径/
cm体积/
cm3备注 HLY-1 2366.00~2372.77 5.09 2.54 25.99 人工裂缝 HLY-2 2347.10~2351.10 5.04 2.54 25.54 人工裂缝 HLY-3 2347.10~2351.10 5.05 2.54 25.79 天然裂缝 HLD-1 1945.50~1949.50 5.07 2.54 24.89 天然裂缝 YL-1 2437.40 5.02 2.54 25.64 天然裂缝 HLD-2 1945.50~1949.50 5.10 2.54 26.05 基块 HLD-3 1945.50~1949.50 5.08 2.54 25.94 基块 HLD-4 1945.50~1949.50 5.10 2.54 25.44 基块 YL-2 4.99 2.54 25.28 基块 HLY-5 2347.10~2351.10 5.04 2.54 25.54 基块 表 2 应力敏感程度评价指标
应力敏感
系数应力敏感
损害程度应力敏感
系数应力敏感
损害程度SS<0.05 无 0.5≤SS<0.7 中等偏强 0.05≤SS<0.3 弱 0.7≤SS<1 强 0.3≤SS<0.5 中等偏弱 SS>1 极强 表 3 海陆过渡相页岩应力敏感程度评价结果
样号 L/
mmD/
mmKmax/
mDKmin/
mDSS 应力敏感
程度备注 HLY-1 50.9 25.4 10.930 0.070 0.80 强 人工裂缝 HLY-2 50.4 25.4 32.580 0.720 0.65 中等偏强 人工裂缝 HLD-1 50.7 25.4 7.570 2.960 0.36 中等偏弱 天然裂缝 YL-1 50.2 25.4 3.630 0.110 0.58 中等偏强 天然裂缝 HLY-3 50.8 25.4 5.540 0.050 0.79 强 天然裂缝 HLD-2 51.0 25.4 0.008 0.006 0.07 弱 基块 HLY-5 50.4 25.4 0.009 0.004 0.19 弱 基块 HLD-3 50.8 25.4 0.007 0.003 0.24 弱 基块 YL-2 49.9 25.4 0.0008 0.0004 0.24 弱 基块 HLD-4 51.0 25.4 0.328 0.096 0.29 弱 基块 -
[1] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575-587.ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4):575-587. [2] 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业,2021,41(8):69-80.ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8):69-80. [3] 郭旭升, 周德华, 赵培荣, 等. 鄂尔多斯盆地石炭系-二叠系煤系非常规天然气勘探开发进展与攻关方向[J]. 石油与天然气地质,2022,43(5):1013-1023.GUO Xusheng, ZHOU Dehua, ZHAO Peirong, et al. Progresses and directions of unconventional natural gas exploration and development in the carboniferous-permian coal measure strata, Ordos basin[J]. Oil & Gas Geology, 2022, 43(5):1013-1023. [4] 董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29-45.DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1):29-45. [5] 匡立春, 董大忠, 何文渊, 等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435-446.KUANG Lichun, DONG Dazhong, HE Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3):435-446. [6] 刘洪林, 王怀厂, 张辉, 等. 鄂尔多斯盆地东部山西组页岩气成藏特征及勘探对策[J]. 地质学报,2020,94(3):905-915.LIU Honglin, WANG Huaichang, ZHANG Hui, et al. Geological characteristics and exploration countermeasures of shale gas in the Shanxi formation of the Ordos basin[J]. Acta Geologica Sinica, 2020, 94(3):905-915. [7] 欧阳伟平, 孙贺东, 张冕. 考虑应力敏感的致密气多级压裂水平井试井分析[J]. 石油学报,2018,39(5):570-577.OU YANG Weiping, SUN Hedong, ZHANG Mian. Well test analysis for multistage fractured horizontal wells in tight gas reservoir considering stress sensitivity[J]. Acta Petrolei Sinica, 2018, 39(5):570-577. [8] 姜瑞忠, 何吉祥, 姜宇, 等. 页岩气藏压裂水平井Blasingame产量递减分析方法建立与应用[J]. 石油学报,2019,40(12):1503-1510.JIANG Ruizhong, HE Jixiang, JIANG Yu, et al. Establishment and application of Blasingame production decline analysis method for fractured horizontal well in shale gas reservoirs[J]. Acta Petrolei Sinica, 2019, 40(12):1503-1510. [9] 王香增, 冯东, 李相方, 等. 考虑时变效应的致密气井产能评价--以延安气田为例[J]. 石油学报, 2019, 40(11): 1358-1367.WANG Xiangzeng, FENG Dong, LI Xiangfang, et al. Productivity evaluation of tight gas well with time dependent mechanism: a case study of Yan'an gasfield[J]. Acta Petrolei Sinica, 2019, 40(11): 1358-1367. [10] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学,2018,29(6):845-852.ZHU Weiyao, MA Dongxu. Effective stress characteristics in shale and its effect on productivity[J]. Natural Gas Geoscience, 2018, 29(6):845-852. [11] 田冷, 肖聪, 顾岱鸿. 考虑应力敏感与非达西效应的页岩气产能模型[J]. 天然气工业,2014,34(12):70-75.TIAN Leng, XIAO Cong, GU Daihong. A shale gas reservoir productivity model considering stress sensitivity and non-Darcy flow[J]. Natural Gas Industry, 2014, 34(12):70-75. [12] 李一波, 何天双, 胡志明, 等. 页岩油藏提高采收率技术及展望[J]. 西南石油大学学报(自然科学版),2021,43(3):101-110.LI Yibo, HE Tianshuang, HU Zhiming, et al. A comprehensive review of enhanced oil recovery technologies for shale oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3):101-110. [13] 李晓平, 刘蜀东, 李纪, 等. 考虑应力敏感效应和含水影响的页岩基质表观渗透率模型[J]. 天然气地球科学,2021,32(6):861-870.LI Xiaoping, LIU Shudong, LI Ji, et al. Apparent gas permeability model of shale matrix coupling stress sensitivity and water saturation[J]. Natural Gas Geoscience, 2021, 32(6):861-870. [14] 康毅力, 李潮金, 游利军, 等. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学,2020,31(4):532-541.KANG Yili, LI Chaojin, YOU Lijun, et al. Stress sensitivity of deep tight gas-reservoir sandstone in Tarim basin[J]. Natural Gas Geoscience, 2020, 31(4):532-541. [15] 肖文联, 李闽, 赵金洲, 等. 低渗致密砂岩渗透率应力敏感性试验研究[J]. 岩土力学,2010,31(3):775-779.XIAO Wenlian, LI Min, ZHAO Jinzhou, et al. Laboratory study of stress sensitivity to permeability in tight sandstone[J]. Rock and Soil Mechanics, 2010, 31(3):775-779. [16] 张少杰. 页岩油藏应力敏感及渗流特征研究[D]. 青岛: 中国石油大学(华东), 2017.ZHANG Shaojie. Stress sensitivity and flow characteristics of shale oil reservoirs[D]. Qingdao: China University of Petroleum(East China), 2017. [17] 罗瑞兰, 程林松, 彭建春, 等. 确定低渗岩心渗透率随有效覆压变化关系的新方法[J]. 中国石油大学学报(自然科学版),2007,31(2):87-90.LUO Ruilan, CHENG Linsong, PENG Jianchun, et al. A new method of determining relationship between permeability and effective overburden pressure for low-permeability reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(2):87-90. [18] 徐新丽. 含微裂缝低渗储层应力敏感性及其对产能影响[J]. 特种油气藏,2015,22(1):127-130.XU Xinli. Stress sensitivity of low-permeability reservoir containing micro-fracture and its influence on productivity[J]. Special Oil & Gas Reservoirs, 2015, 22(1):127-130. [19] 赵伦, 陈烨菲, 宁正福, 等. 异常高压碳酸盐岩油藏应力敏感实验评价——以滨里海盆地肯基亚克裂缝-孔隙型低渗透碳酸盐岩油藏为例[J]. 石油勘探与开发,2013,40(2):194-200.ZHAO Lun, CHEN Yefei, NING Zhengfu, et al. Stress sensitive experiments for abnormal overpressure carbonate reservoirs: a case from the Kenkiyak low-permeability fractured-porous oilfield in the littoral Caspian basin[J]. Petroleum Exploration and Development, 2013, 40(2):194-200. [20] YANG Y, LIU Z, SUN Z, et al. Research on stress sensitivity of fractured carbonate reservoirs based on CT technology[J]. Energies, 2017, 10(11):1833. [21] 刘仁静, 刘慧卿, 张红玲, 等. 低渗透储层应力敏感性及其对石油开发的影响[J]. 岩石力学与工程学报,2011,30(Z1):2697-2702.LIU Renjing, LIU Huiqing, ZHANG Hongling, et al. Study of stress sensitivity and its influence on oil development in low permeability reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Z1):2697-2702. [22] 赵龙梅, 文桂华, 李星涛, 等. 鄂尔多斯盆地大宁-吉县区块山西组2~3亚段致密砂岩气储层“甜点区”评价[J]. 天然气工业,2018(S1):5-10.ZHAO Longmei, WEN Guihua, LI Xingtao, et al. Evaluation of “sweet spot” tight sandstone gas reservoirs in the 2nd-3rd sub-member of the Shanxi formation, Daning-Jixian block, Ordos basin[J]. Natural Gas Industry, 2018(S1):5-10. [23] 李五忠, 陈刚, 孙斌, 等. 大宁-吉县地区煤层气成藏条件及富集规律[J]. 天然气地球科学,2011,22(2):352-360.LI Wuzhong, CHEN Gang, SUN Bin, et al. Geological controls of coalbed methane enrichment in Daning-Jixian area, southeastern Ordos basin[J]. Natural Gas Geoscience, 2011, 22(2):352-360. [24] 田雯. 鄂尔多斯盆地东南部二叠系山西组沉积体系研究[D]. 西安: 西北大学, 2016.TIAN Wen. Sedimentary system study of permian Shaanxi formation in south-eastern of Ordos basin[D]. Xi'an: Northwest University, 2016. [25] 田夏荷. 鄂尔多斯盆地东部本溪组-山西组致密气储层分类评价研究[D]. 西安: 西北大学, 2016.TIAN Xiahe. Research on tight gas reservoirs evaluationand classifcation of Benxi formation-Shanxi formation in eastern Ordos basin[D]. Xi'an: Northwest University, 2016. [26] 兰朝利, 郭伟, 王奇, 等. 鄂尔多斯盆地东部二叠系山西组页岩气成藏条件与有利区筛选[J]. 地质学报,2016,90(1):177-188.LAN Chaoli, GUO Wei, WANG Qi, et al. Shale gas accumulation condition and favorable area optimization of the permian Shanxi formation, eastern Ordos basin[J]. Acta Geologica Sinica, 2016, 90(1):177-188. [27] 张琴, 邱振, 张磊夫, 等. 海陆过渡相页岩气储层特征与主控因素 ——以鄂尔多斯盆地大宁—吉县区块二叠系山西组为例[J]. 天然气地球科学,2022,33(3):396-407.ZHANG Qin, QIU Zhen, ZHANG Leifu, et al. Reservoir characteristics and its influence on transitional shale: an example from permian Shanxi formation shale, Daning-Jixian blocks, Ordos basin[J]. Natural Gas Geoscience, 2022, 33(3):396-407. [28] 康毅力, 赖哲涵, 陈明君, 等. 基于压力衰减法的页岩气体扩散系数应力敏感性实验[J]. 天然气工业,2022,42(2):59-70.KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Stress sensitivity experiments of shale gas diffusion coefficients based on the pressure decay method[J]. Natural Gas Industry, 2022, 42(2):59-70. [29] 康毅力, 赖哲涵, 陈明君, 等. 页岩储层应力敏感性的时间效应[J]. 西南石油大学学报(自然科学版),2024,46(1):53-63.KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Time effects of stress sensitivity in shale reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1):53-63. [30] 兰林, 康毅力, 陈一健, 等. 储层应力敏感性评价实验方法与评价指标探讨[J]. 钻井液与完井液,2005,22(3):1-4.LAN Lin, KANG Yili, CHEN Yijian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3):1-4. [31] BERNABE Y. The effective pressure law for permeability in Chelmsford granite and Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3):267-275. [32] 孙军昌, 杨正明, 魏国齐, 等. 不同孔隙类型火山岩储层渗透率应力敏感特征[J]. 岩土力学,2012,33(12):3577-3584.SUN Junchang, YANG Zhengming, WEI Guoqi, et al. Characterization of stress-dependent permeability of volcanic gas reservoir of different types of pore structure[J]. Rock and Soil Mechanics, 2012, 33(12):3577-3584. [33] 曹耐, 雷刚. 致密储集层加压-卸压过程应力敏感性[J]. 石油勘探与开发,2019,46(1):132-138.CAO Nai, LEI Gang. Stress sensitivity of tight reservoirs during pressure loading and unloading process[J]. Petroleum Exploration and Development, 2019, 46(1):132-138. [34] 代平. 低渗透应力敏感油藏实验及数值模拟研究[D]. 成都: 西南石油大学, 2006.DAI Ping. The experiment and numerical simulation research on low-permeability reservoir[D]. Chengdu: Southwest Petroleum University, 2006. [35] CHEN M, KANG Y, ZHANG T, et al. Shale gas transport behavior considering dynamic changes in effective flow channels[J]. Energy Science Engineering, 2019, 7(5):2059-2076. [36] 张浩, 康毅力, 陈一健, 等. 致密砂岩油气储层岩石变形理论与应力敏感性[J]. 天然气地球科学,2004,15(5):482-486.ZHANG Hao, KANG Yili, CHEN Yijian, et al. Deformation theory and stress sensitivity of tight sandstones reserviors[J]. Natural Gas Geoscience, 2004, 15(5):482-486. [37] CHEN X, YU J, TANG C, et al. Deformation theory and stress sensitivity of tight sandstones reserviors[J]. Rock Mechanics and Rock Engineering, 2017, 50(6):1529-1549. -