留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低压气井水侵伤害及解堵液体系研究与应用

廖云虎 林科雄 贾辉 罗刚 郑华安 任坤峰

廖云虎,林科雄,贾辉,等. 低压气井水侵伤害及解堵液体系研究与应用[J]. 钻井液与完井液,2024,41(6):824-832 doi: 10.12358/j.issn.1001-5620.2024.06.017
引用本文: 廖云虎,林科雄,贾辉,等. 低压气井水侵伤害及解堵液体系研究与应用[J]. 钻井液与完井液,2024,41(6):824-832 doi: 10.12358/j.issn.1001-5620.2024.06.017
LIAO Yunhu, LIN Kexiong, JIA Hui, et al.Study on and application of a blocking removal system for reservoir damage by water invasion in low pressure gas wells[J]. Drilling Fluid & Completion Fluid,2024, 41(6):824-832 doi: 10.12358/j.issn.1001-5620.2024.06.017
Citation: LIAO Yunhu, LIN Kexiong, JIA Hui, et al.Study on and application of a blocking removal system for reservoir damage by water invasion in low pressure gas wells[J]. Drilling Fluid & Completion Fluid,2024, 41(6):824-832 doi: 10.12358/j.issn.1001-5620.2024.06.017

低压气井水侵伤害及解堵液体系研究与应用

doi: 10.12358/j.issn.1001-5620.2024.06.017
基金项目: 中海油南海西部上产2000万方专项“南海西部在生产油气田提高采收率技术研究”(CCL2019ZJFN1202);中海油综合性科研项目“高温高压气井增产与治理关键技术研究”(KJZH-2023-2204)。
详细信息
    作者简介:

    廖云虎,高级工程师,1981年生,现在主要从事采油工艺相关的研究工作。E-mail:2032327771@qq.com

    通讯作者:

    林科雄,工程师,1978年生,现在主要从事油田化学方面的研究工作。电话:15027005910;E-mail:linkx_2003@163.com

  • 中图分类号: TE258

Study on and Application of a Blocking Removal System for Reservoir Damage by Water Invasion in Low Pressure Gas Wells

  • 摘要: 南海D气田低压气井存在较为严重的水侵伤害问题,通过岩屑膨胀率实验、岩心水敏伤害实验、水锁伤害预测、岩心水侵驱替实验以及三维CT扫描分析等手段目标低压气井水侵伤害进行了研究,明确了水侵伤害的程度。通过对水侵防治剂和新型复合有机酸HWCP的性能评价及优化,结合缓蚀剂、防水锁剂和黏土稳定剂等处理剂,研制了一套适合海上低压气井水侵伤害治理的解堵液体系。研究结果表明:凝析水对低渗岩心的水敏伤害较为严重,水锁损害程度预测结果为弱~中等偏弱。储层天然岩心存在比较严重的水侵伤害现象,当驱替压力为0.5 MPa,驱替时间为180 min时,饱和地层水和凝析水的两块岩心水侵伤害率分别为59.76%和69.67%。解堵液体系具有较低的表面张力、良好的防膨效果和缓蚀性能、较强的水侵伤害解除能力,天然岩心注入水侵防治剂和解堵液后,驱替180 min后的渗透率恢复值可达100%以上。解堵工作液体系在南海D气田A9hSa井进行了现场应用,成功解除了水侵伤害,该井产气量从3.3×104 m3/d提升到9.0×104 m3/d以上,取得了良好的现场应用效果。

     

  • 图  1  岩心水侵前后不同截面的MCT图

    图  2  岩心水侵前后孔隙半径和配位数分布图

    图  3  腐蚀后钢片外观

    图  4  解除水侵前后渗透率恢复值随驱替时间的变化趋势图(4#岩心)

    图  5  解除水侵前后渗透率恢复值随驱替时间的变化趋势图(5#岩心)

    表  1  不同水样离子组成分析结果

    水样类型 阴离子/(mg·L−1 阳离子/(mg·L−1 总矿化度/
    mg·L−1
    水型
    HCO3 Cl SO42− K+/Na+ Ca2+ Mg2+
    B6H井凝析水 150 98 205 16 3 471 NaHCO3
    B8H2井地层水 969 16 911 150 10 760 366 95 29 251 CaCl2
    海水 138 17 359 2552 10 004 421 1144 31 623 CaCl2
    下载: 导出CSV

    表  2  储层岩屑膨胀率测定结果

    井号 岩屑井深/m 实验流体 膨胀率/%
    D气田B9H井 1413~1415 凝析水 21.12
    地层水 5.28
    海水 5.02
    1419~1421 凝析水 18.78
    地层水 4.58
    海水 4.51
    下载: 导出CSV

    表  3  凝析水对储层天然岩心的水敏伤害结果

    岩心号 井号 深度/
    m
    K0/
    mD
    Kd/
    mD
    水敏损害率/
    %
    水敏伤
    害程度
    1# B5H 1347.1 320.55 262.57 18.09
    2# B5H 1340.8 36.88 4.49 87.83
    3# B7Sah 1367.0 12.59 2.84 77.44
    下载: 导出CSV

    表  4  目标气田不同气井的水锁伤害预测结果

    井号 层位 原始含水饱和度/% 孔隙度/% 测井渗透率/mD 水锁指数 水锁伤害程度
    B8H2 Ⅰ(9) 46.4 24.1 59.1 0.71 中等偏弱
    B7Sah Ⅰ(5) 50.7 22.8 24.6 0.71 中等偏弱
    A10H (A) 59.4 24.2 27.9 0.92
    B3H1 Ⅰ(9) 58.7 22.1 10.4 0.80 中等偏弱
    B5H Ⅰ(5)A 57.3 22.8 18.0 0.82
    B4H Ⅰ(9) 60.5 22.4 10.8 0.84
    B6H (B) 55.0 24.0 54.3 0.89
    B1H (B) 63.9 22.5 12.8 0.93
    B9H (B) 64.8 20.8 5.1 0.85
    下载: 导出CSV

    表  5  地层水对岩心的水侵伤害实验结果

    实验
    流体
    岩心号岩心长
    度/cm
    K0/
    mD
    驱替压
    力/MPa
    驱替时
    间/min
    水侵伤
    害率/%
    地层水22-17.8714.852.06066.12
    12041.23
    18031.09
    22-27.9214.071.06069.09
    12054.47
    18045.42
    22-37.9012.650.56084.40
    12072.56
    18059.76
    下载: 导出CSV

    表  6  凝析水对岩心的水侵伤害实验结果

    实验
    流体
    岩心号 岩心长
    度/cm
    K0/
    mD
    驱替压
    力/MPa
    驱替时
    间/min
    水侵伤
    害率/%
    凝析水 22-4 7.48 13.29 2.0 60 72.29
    120 48.83
    180 37.32
    22-5 7.66 12.37 1.0 60 79.37
    120 61.02
    180 50.50
    22-6 7.78 14.86 0.5 60 89.88
    120 78.68
    180 69.67
    下载: 导出CSV

    表  7  水侵防治剂与地层水混合后的表面张力值

    水侵防治剂∶地层水 10∶0 8∶2 5∶5 2∶8 0∶10
    表面张力/ (mN·m−1 23.04 26.83 29.01 38.56 79.85
    下载: 导出CSV

    表  8  水侵防治剂与地层水的配伍性

    水侵防治剂∶地层水 10∶0 8∶2 5∶5 2∶8 0∶10
    浊度(NTU)老化前4.15.35.56.54.3
    老化后4.65.99.18.87.2
    下载: 导出CSV

    表  9  解堵液体系基本性能

    种类ρ/
    g·cm−3
    表面张力/
    mN·m−1
    pH值η/
    mPa·s
    防膨率/
    %
    前置液0.8723.047.00.598.2
    解堵液1.0419.751.01.090.5
    顶替液1.0219.547.01.088.4
    下载: 导出CSV

    表  10  解堵液缓蚀性能评价结果

    钢片
    编号
    T/
    腐蚀前
    质量/g
    腐蚀后
    质量/g
    腐蚀速率/
    g/m2·h
    平均腐蚀速率/
    g/m2·h
    7103 90 8.5497 8.5420 1.53 1.34
    7104 90 8.5893 8.5835 1.15
    7101 150 8.6600 8.6365 4.66 4.42
    7105 150 8.6197 8.5986 4.18
    下载: 导出CSV

    表  11  天然岩心基本参数

    岩心号 取样
    井深/m
    长度/
    cm
    直径/
    cm
    孔隙度/
    %
    气测渗
    透率/mD
    4# 1421~1423 4.62 2.50 19.4 11.11
    5# 1426~1428 4.45 2.45 23.4 23.65
    下载: 导出CSV
  • [1] 毕晓明. 火山岩气藏驱动类型特征新认识[J]. 非常规油气,2021,8(3):10-16.

    BI Xiaoming. New understanding about characteristics of volcanic rock gas reservoir drive type[J]. Unconventional Oil & Gas, 2021, 8(3):10-16.
    [2] 洪舒娜, 秦峰, 陈斯宇, 等. 海上生产气井动态产能评价新方法[J]. 非常规油气,2021,8(6):60-67.

    HONG Shuna, QIN Feng, CHEN Siyu, et al. A new method for dynamic productivity evaluation of offshore gas wells[J]. Unconventional Oil & Gas, 2021, 8(6):60-67.
    [3] 池明, 马文敏, 郭玲, 等. XJ油田低压低产气井有效分类方法[J]. 昆明理工大学学报(自然科学版),2023,48(2):55-63.

    CHI Ming, MA Wenmin, GUO Ling, et al. An effective classification method for low-pressure and low-production gas wells in XJ oilfield[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2023, 48(2):55-63.
    [4] 关闻. 基于SEC储量评估的气井措施评价模型与应用[J]. 非常规油气,2023,10(3):112-120.

    GUAN Wen. An evaluation method and practice of gas well measure benefit based on SEC evaluation rules[J]. Unconventional Oil & Gas, 2023, 10(3):112-120.
    [5] 叶颉枭, 张华礼, 李松, 等. 川东石炭系低压气井解堵工艺研究与应用[J]. 石油与天然气化工,2021,50(3):71-74,84. doi: 10.3969/j.issn.1007-3426.2021.03.011

    YE Jiexiao, ZHANG Huali, LI Song, et al. Research and application of blockage removal technology for low-pressure gas well in eastern Sichuan Carboniferous formation[J]. Chemical Engineering of Oil and Gas, 2021, 50(3):71-74,84. doi: 10.3969/j.issn.1007-3426.2021.03.011
    [6] 包凯. 页岩气井变流压-变产量递减模型及应用[J]. 非常规油气,2022,9(6):81-86.

    BAO Kai. Variable pressure-variable production decline model and its application in shale gas wells[J]. Unconventional Oil & Gas, 2022, 9(6):81-86.
    [7] 吕毓刚, 潘海燕, 邬国栋, 等. 强水敏低渗油藏酸化防膨研究及现场应用[J]. 石油与天然气化工,2018,47(3):76-79. doi: 10.3969/j.issn.1007-3426.2018.03.016

    LYU Yugang, PAN Haiyan, WU Guodong, et al. Study and application of acidification anti-swelling for low permeability reservoir with strong water sensitivity[J]. Chemical Engineering of Oil and Gas, 2018, 47(3):76-79. doi: 10.3969/j.issn.1007-3426.2018.03.016
    [8] 孙林, 杨军伟, 周伟强, 等. 一种适合海上砂岩油田的单段塞活性酸体系[J]. 钻井液与完井液,2016,33(1):97-101.

    SUN Lin, YANG Junwei, ZHOU Weiqiang, et al. Acidizing offshore sandstone reservoir with a single slug active acid system[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):97-101.
    [9] 马勇新, 张立权, 杨仲涵, 等. 浅层疏松砂岩气层损害评价方法研究及应用[J]. 钻井液与完井液,2021,38(1):68-73. doi: 10.3969/j.issn.1001-5620.2021.01.011

    MA Yongxin, ZHANG Liquan, YANG Zhonghan, et al. Study and application of the method for evaluating damage to shallow unconsolidated sandstone gas formations[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):68-73. doi: 10.3969/j.issn.1001-5620.2021.01.011
    [10] 李善建, 何浩轩, 王泽坤, 等. 气井井筒堵塞原因分析及解堵工艺研究进展[J]. 西安石油大学学报(自然科学版),2024,39(1):56-65.

    LI Shanjian, HE Haoxuan, WANG Zekun, et al. Analysis of reasons for wellbore blockage in gas wells and research progress in blockage removal technology[J]. Journal of Xi'an Shiyou University(Natural Science), 2024, 39(1):56-65.
    [11] 邢希金, 刘书杰, 黄晶. K30井堵塞原因分析及解堵措施[J]. 承德石油高等专科学校学报,2015,17(6):23-27. doi: 10.3969/j.issn.1008-9446.2015.06.006

    XING Xijin, LIU Shujie, HUANG Jing. Plug reason analysis and removal treatment research of well K30[J]. Journal of Chengde Petroleum College, 2015, 17(6):23-27. doi: 10.3969/j.issn.1008-9446.2015.06.006
    [12] 许伟星, 陈平, 汪小宇. 长庆低压气井低伤害修井液研发[J]. 石油化工应用,2022,41(4):72-75. doi: 10.3969/j.issn.1673-5285.2022.04.017

    XU Weixing, CHEN Ping, WANG Xiaoyu. Research of low damage workover fluid in Changqing low-pressure gas wells[J]. Petrochemical Industry Application, 2022, 41(4):72-75. doi: 10.3969/j.issn.1673-5285.2022.04.017
    [13] 刘历历, 解英明, 李育展, 等. 低压气井修井注气吞吐复产气液两相渗流规律[J]. 新疆石油天然气,2023,19(2):75-81. doi: 10.12388/j.issn.1673-2677.2023.02.010

    LIU Lili, XIE Yingming, LI Yuzhan, et al. The law of Gas-Liquid Two-Phase seepage for workover gas injection huff and puff production recovery in Low-Pressure gas wells[J]. Xinjiang Oil & Gas, 2023, 19(2):75-81. doi: 10.12388/j.issn.1673-2677.2023.02.010
    [14] 吴婷婷, 朱华, 李隆新, 等. 超深层多断裂碳酸盐岩气藏水侵模式及治水对策[J]. 天然气勘探与开发,2023,46(3):49-58. doi: 10.12055/gaskk.issn.1673-3177.2023.03.006

    WU Tingting, ZHU Hua, LI Longxin, et al. Water-invasion patterns and ways to deal with water in ultra-deep carbonate gas reservoirs with multiple fractures[J]. Natural Gas Exploration and Development, 2023, 46(3):49-58. doi: 10.12055/gaskk.issn.1673-3177.2023.03.006
    [15] 谭晓华, 李胜胜, 李晓平, 等. ZB气田Xu-2气藏水侵方向研究新方法[J]. 科学技术与工程,2019,19(20):165-173. doi: 10.3969/j.issn.1671-1815.2019.20.024

    TAN Xiaohua, LI Shengsheng, LI Xiaoping, et al. A new method for studying water invasion direction in Xu-2 gas reservoir of ZB gas field[J]. Science Technology and Engineering, 2019, 19(20):165-173. doi: 10.3969/j.issn.1671-1815.2019.20.024
    [16] 刘爱华, 韩玉坤, 梁红娇, 等. 普光气田气井水侵特征识别及出水模式探讨[J]. 特种油气藏,2015,22(3):125-127. doi: 10.3969/j.issn.1006-6535.2015.03.032

    LIU Aihua, HAN Yukun, LIANG Hongjiao, et al. Water invasion identification and water production mode in gas well in Puguang gas field[J]. Special Oil & Gas Reservoirs, 2015, 22(3):125-127. doi: 10.3969/j.issn.1006-6535.2015.03.032
    [17] 吴绍伟, 周泓宇, 林科雄, 等. 海上油田微粒运移堵塞井解堵控砂一体化工作液体系[J]. 钻井液与完井液,2021,38(3):391-396.

    WU Shaowei, ZHOU Hongyu, LIN Kexiong, et al. An integrated working fluid for blocking removal and sand control in offshore wells blocked by particle migration[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):391-396.
    [18] 赵志强,罗健生. 热释放解堵剂 ThermAcid 的室内研究[J]. 钻井液与完井液,2023,40(1):134-138.

    ZHAO Zhiqiang, LUO Jiansheng. Laboratory study on the heat-release blockage removing agent thermacid[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):134-138.
    [19] 王耀聪,常笃,张庆祝,等. 温度响应型油田解堵剂的研究与应用[J]. 钻井液与完井液,2023,40(1):134-138.

    WANG Yaocong, CHANG Du, ZHANG Qingzhu, et al. Study and application of temperature-responsive blockage removal agent in oilfield[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):134-138.
    [20] 何立成,蓝强,黄维安,等. 有机缓释微乳酸高效解堵剂的制备及性能研究[J]. 钻井液与完井液,2022,39(2):259-264.

    HE Licheng, LAN Qiang, HUANG Wei’an, et al. Preparation and properties of slow-release organic acid micro-emulsion with high efficient plugging removal[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):259-264.
  • 加载中
图(5) / 表(11)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  60
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-06-25
  • 录用日期:  2024-06-12
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回