An Excellent Calcium- and Salt-Resistant Adsorptive Retarder for Acid Job
-
摘要: 为增强储层酸化改造效果,利用磺酸盐单体(MS)、丙烯酰胺(AM)、烯丙基聚氧乙烯醚(APEG-2400)、十八烷基二甲基烯丙基氯化铵(DMAAC-18)制备一种吸附型酸化缓速剂。通过单因素实验筛选出最佳合成条件:单体配比n(AM)∶n(MS)∶n(DMAAC-18)∶n(APEG-2400) = 90∶5∶1∶4,单体浓度为35%,引发剂加量为1.0%,反应温度为50 ℃,反应时间为5 h。使用傅里叶变换红外光谱仪(FT-IR)表征缓速剂的结构,结果表明与预期产物相符。在缓速剂加量为1.3%时,缓速率达到81.56%,并且表观黏度保持在3 mPa·s,具备优异的低黏性能。同时酸化缓速剂在110 ℃下的缓速率超过83%,拥有良好的抗温性能。酸化缓速剂与助排剂、铁离子稳定剂和缓蚀剂之间的配伍性好,不会出现沉淀絮凝,缓速酸体系缓速效果较好。抗氯化钙能力可达
70000 mg/L,在350 ℃的高温下,质量损失只有17.59%,热稳定性良好。扫描电子显微镜(SEM)测试结果表明,缓速剂在岩石表面成功吸附并形成了一层致密的吸附膜。Abstract: An adsorptive retarder for acid job has been developed aimed at enhancing the stimulation effect of acid job. The retarder is synthesized using monomers such as monomeric sulfonate (MS), acrylamide (AM), allyl polyoxyethylene glycol (APEG-2400) and octadecyl dimethyl allyl ammonium chloride (DMAAC-18) in a concentration ratio of n(AM)∶n(MS)∶n(DMAAC-18)∶n(APEG-2400) = 90∶5∶1∶4. The concentration of the monomers is 35%, the concentration of the initiator is 1.0%, the reaction temperature is 50 ℃ and the reaction time is 5 h. These reaction conditions were determined through single-factor experiment. The characterization of the molecular structure of the retarder with FT-IR shows that the reaction product is what was expected. The retarding efficiency of the retarder at a concentration of 1.3% is 81.56%, and the system has its apparent viscosity stabilized at 3 mPa∙s, an excellent low viscosity property. At 110 ℃, the retarding efficiency of the retarder exceeds 83%, indicating that the retarder has good high temperature performance. This retarder has good compatibility with cleanup additives, iron ion stabilizers and corrosion inhibitors; no flocculation and precipitation exist when the retarder is used with other additives. This retarder is able to resist the contamination by 70,000 mg/L CaCl2. It also has good thermal stability; at 350 ℃, the rate of mass loss of the retarder is only 17.59%. Observation of the retarder under SEM shows that the retarder is adsorbed on the surfaces of the rocks and forms a dense layer of adsorption membrane.-
Key words:
- Carbonate reservoir /
- Acidize /
- Retarder /
- Adsorb
-
表 1 单体配比优化
n(AM)∶n (MS)∶
n (DMAAC-18)∶
n (APEG-2400)溶蚀率/
%n (AM)∶n (MS)∶
n (DMAAC-18)∶
n (APEG-2400)溶蚀率/
%10∶70∶1∶19 54.3 75∶5∶1∶19 48.5 20∶60∶1∶19 56.6 80∶10∶1∶9 44.1 30∶50∶1∶19 51.8 85∶10∶1∶4 43.7 40∶40∶1∶19 51.9 85∶5∶1∶9 30.5 50∶30∶1∶19 52.5 85∶3∶1∶11 36.9 60∶20∶1∶19 50.4 90∶5∶1∶4 28.3 70∶10∶1∶19 46.0 90∶7∶1∶2 32.2 表 2 单因素优化
单体浓度/% 引发剂/% T/℃ t/h 溶蚀率/% 20 0.6 50 5 56.1 25 0.6 50 5 47.6 30 0.6 50 5 45.2 35 0.6 50 5 37.3 40 0.6 50 5 42.2 35 0.4 50 5 52.6 35 0.6 50 5 39.5 35 0.8 50 5 36.1 35 1.0 50 5 31.8 35 1.2 50 5 33.2 35 1.0 35 5 55.0 35 1.0 40 5 52.4 35 1.0 45 5 42.6 35 1.0 50 5 30.3 35 1.0 55 5 32.6 35 1.0 50 2 52.3 35 1.0 50 3 47.2 35 1.0 50 4 33.0 35 1.0 50 5 27.7 35 1.0 50 6 32.5 表 3 不同浓度缓速酸溶液的表观黏度
序号 缓速酸/% AV/mPa·s 1 0.3 1.5 2 0.5 1.5 3 0.7 1.5 4 0.9 1.5 5 1.1 3.0 6 1.3 3.0 7 1.5 3.0 表 4 不同温度下酸化缓速剂的缓速率
序号 T/℃ 缓速率/% 1 50 81.56 2 70 82.87 3 90 82.57 4 100 83.02 5 110 83.21 表 5 不同温度下缓速酸体系的缓速率
序号 T/℃ 浓度/% 缓速率/% 1 100 1.3 77.64 2 110 1.3 73.99 -
[1] 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报,2012,33(S2):166-173.WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(S2):166-173. [2] 王丽伟, 石阳, 高莹, 等. 我国油气藏增产酸液体系的发展历程及进展[J]. 河南化工,2019,36(7):3-6.WANG Liwei, SHI Yang, GAO Ying, et al. Development history and prgress of acid liquid system of oil and gas reservoirs for increasing production in China[J]. Henan Chemical Industry, 2019, 36(7):3-6. [3] WU H J, LIU J, WANG X, et al. Research and application of wellbore Fixed-Point acidification unblocking technology for high temperature and high pressure gas wells[C]//International Petroleum Technology Conference. Dhahran, Kingdom of Saudi Arabia, 2020: IPTC-19736-Abstract. [4] HAN X L, XIONG C M, YANG Z W, et al. Mechanism of natural fractures opening in ultra-deep fractured reservoir during stimulation[C]//5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future. Okinawa, Japan, 2019: ISRM-YSRM. [5] 陈大钧, 陈馥. 油气田应用化学[M]. 北京: 石油工业出版社, 2015.CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fields[M]. Beijing: Petroleum industry press, 2015. [6] 王小军, 刘炜, 肖佳林. 耐高温酸液稠化剂的制备及性能研究[J]. 精细石油化工进展,2022,23(5):7-11.WANG Xiaojun, LIU Wei, XIAO Jialin. Preparation and properties of high temperature resistant acid thickener[J]. Advances in Fine Petrochemicals, 2022, 23(5):7-11. [7] 李晖, 罗斌, 李钦, 等. 耐高温酸液胶凝剂的制备及性能评价[J]. 油田化学,2022,39(4):589-594.LI Hui, LUO Bin, LI Qin, et al. Preparation and performance evaluation of acid gelling agent with high temperature resistance[J]. Oilfield Chemistry, 2022, 39(4):589-594. [8] GOMAA A M M, NASR-EL-DIN H A A. New insights into the viscosity of polymer-based In-Situ-Gelled acids[J]. SPE Production & Operations, 2010, 25(3):367-375. [9] 袁青, 李文杰, 毕研霞, 等. 新型耐温乳化酸的室内研制[J]. 石油化工应用,2015,34(1):111-114. doi: 10.3969/j.issn.1673-5285.2015.01.028YUAN Qing, LI Wenjie, BI Yanxia, et al. The experimental research of new emulsified acid with high temperature resistance[J]. Petrochemical Industry Application, 2015, 34(1):111-114. doi: 10.3969/j.issn.1673-5285.2015.01.028 [10] 姜桂芹, 王国勇, 胡庆贺. 氧化石墨烯纳米粒子提高乳化酸性能实验研究[J]. 应用化工,2020,49(12):3008-3010,3015. doi: 10.3969/j.issn.1671-3206.2020.12.011JIANG Guiqin, WANG Guoyong, HU Qinghe. Experimental study on improving the performance of emulsified acid by using graphene oxide (GO) nanoparticles[J]. Applied Chemical Industry, 2020, 49(12):3008-3010,3015. doi: 10.3969/j.issn.1671-3206.2020.12.011 [11] SAYED M A, NASR-EL-DIN H A, ZHOU J, et al. A new emulsified acid to stimulate deep wells in carbonate reservoirs: coreflood and acid reaction studies[C]//North Africa Technical Conference and Exhibition. Cairo, Egygt, 2012: SPE-151062-MS. [12] 马应娴, 田博涵, 毛源, 等. 潜山油藏智能转向酸化技术研究与应用[J]. 钻井液与完井液,2023,40(1):118-124. doi: 10.12358/j.issn.1001-5620.2023.01.016MA Yingxian, TIAN Bohan, MAO Yuan, et al. Study and application of an intelligent self-diverting acidizing technology for buried-hill reservoir development[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):118-124. doi: 10.12358/j.issn.1001-5620.2023.01.016 [13] 全红平, 申鹏, 张磊, 等. 表面活性剂-聚合物自组装酸化转向用聚合物的合成[J]. 精细化工,2023,40(7):1587-1595,1604.QUAN Hongping, SHEN Peng, ZHANG Lei, et al. Synthesis of polymer for surfactant-polymer self-assembly acidification[J]. Fine Chemicals, 2023, 40(7):1587-1595,1604. [14] 全红平, 甄学乐, 严忠, 等. 非交联酸化自转向剂ADDA的合成及转向性能评价[J]. 精细化工,2022,39(5):1054-1062.QUAN Hongping, ZHEN Xuele, YAN Zhong, et al. Synthesis and diverting performance evaluation of non-crosslinked acidification self-diverting agent ADDA[J]. Fine Chemicals, 2022, 39(5):1054-1062. [15] 赵珊. 地面交联酸稠化剂合成及其性能评价[D]. 北京: 中国石油大学(北京), 2019.ZHAO Shan. The synthesis and performance evaluation of surface cross-linked acid viscosifier[D]. Beijing: China University of Petroleum(Beijing), 2019. [16] 全红平, 吴洋, 李欢, 等. 具有吸附作用的酸液缓速外加剂FL-1的研制[J]. 现代化工,2015,35(1):118-121.QUAN Hongping, WU Yang, LI Huan, et al. Development of acid retarding additive FL-1 with adsorption property[J]. Modern chemical industry, 2015, 35(1):118-121. [17] 邢林庄, 袁玥辉, 叶成, 等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液,2023,40(6):703-710.XING Linzhuang, YUAN Yuehui, YE Cheng, et al. Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):703-710. [18] 孟小芳, 姜杰, 任继波, 等. 低渗油藏提高采收率研究与应用[J]. 中国石油和化工标准与质量,2021,41(7):103-104. doi: 10.3969/j.issn.1673-4076.2021.07.049MENG Xiaofang, JIANG Jie, REN Jibo, et al. Research and application of enhanced oil recovery in low permeability reservoir[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(7):103-104. doi: 10.3969/j.issn.1673-4076.2021.07.049 [19] 刘杨. 低渗油藏储层伤害与解堵工艺[J]. 石油知识,2021(6):50-51.LIU Yang. Reservoir damage and plugging removal technology of low permeability reservoir[J]. Petroleum Knowledge, 2021(6):50-51. [20] CHEN Z H, QUAN H P, HUANG Z Y, et al. Investigation of the nonionic acidizing retarder AAO for reservoir stimulation[J]. ACS omega, 2023, 8(42):39041-39051. doi: 10.1021/acsomega.3c03849 [21] QUAN H P, LU Q Y, CHEN Z H, et al. Adsorption-desorption behaviors of the hydrophobically associating copolymer AM/APEG/C-18/SSS[J]. RSC Advances, 2019, 9(22):12300-12309. doi: 10.1039/C9RA01932D [22] 刘京, 于洋洋, 于梦红, 等. 一种吸附型酸化缓速剂的制备及性能研究[J]. 钻井液与完井液,2022,39(1):92-99.LIU Jing, YU Yangyang, YU Menghong, et al. Preparation and performance study of an adsorptive retardant for acid job[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):92-99. -