留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种抗钙盐性能优异的吸附型酸化缓速剂

蒋琪 王鹏祥 全红平

蒋琪,王鹏祥,全红平. 一种抗钙盐性能优异的吸附型酸化缓速剂[J]. 钻井液与完井液,2024,41(6):816-823 doi: 10.12358/j.issn.1001-5620.2024.06.016
引用本文: 蒋琪,王鹏祥,全红平. 一种抗钙盐性能优异的吸附型酸化缓速剂[J]. 钻井液与完井液,2024,41(6):816-823 doi: 10.12358/j.issn.1001-5620.2024.06.016
JIANG Qi, WANG Pengxiang, QUAN Hongping.An excellent calcium- and salt-resistant adsorptive retarder for acid job[J]. Drilling Fluid & Completion Fluid,2024, 41(6):816-823 doi: 10.12358/j.issn.1001-5620.2024.06.016
Citation: JIANG Qi, WANG Pengxiang, QUAN Hongping.An excellent calcium- and salt-resistant adsorptive retarder for acid job[J]. Drilling Fluid & Completion Fluid,2024, 41(6):816-823 doi: 10.12358/j.issn.1001-5620.2024.06.016

一种抗钙盐性能优异的吸附型酸化缓速剂

doi: 10.12358/j.issn.1001-5620.2024.06.016
基金项目: 国家自然科学基金项目“低粘吸附型酸化缓速剂分子设计及缓速机理研究”(51604229);四川省科技计划项目“聚合物型非交联自转向酸化转向剂分子设计及转向机理研究”(2019YJ0315);油气田应用化学四川省重点实验室开放基金项目“聚合物型非交联酸化自转向剂的研究”(YQKF202001)。
详细信息
    作者简介:

    蒋琪,助理工程师,1991年生,现在从事油气田开发研究工作。电话15727023187;E-mail:1224632102@qq.com

    通讯作者:

    全红平,教授,1982年生,2010年获西南石油大学工学博士学位,现在从事油田化学品及工作液的研发与应用。E-mail:59183228@qq.com

  • 中图分类号: TE357.12

An Excellent Calcium- and Salt-Resistant Adsorptive Retarder for Acid Job

  • 摘要: 为增强储层酸化改造效果,利用磺酸盐单体(MS)、丙烯酰胺(AM)、烯丙基聚氧乙烯醚(APEG-2400)、十八烷基二甲基烯丙基氯化铵(DMAAC-18)制备一种吸附型酸化缓速剂。通过单因素实验筛选出最佳合成条件:单体配比n(AM)∶n(MS)∶n(DMAAC-18)∶n(APEG-2400) = 90∶5∶1∶4,单体浓度为35%,引发剂加量为1.0%,反应温度为50 ℃,反应时间为5 h。使用傅里叶变换红外光谱仪(FT-IR)表征缓速剂的结构,结果表明与预期产物相符。在缓速剂加量为1.3%时,缓速率达到81.56%,并且表观黏度保持在3 mPa·s,具备优异的低黏性能。同时酸化缓速剂在110 ℃下的缓速率超过83%,拥有良好的抗温性能。酸化缓速剂与助排剂、铁离子稳定剂和缓蚀剂之间的配伍性好,不会出现沉淀絮凝,缓速酸体系缓速效果较好。抗氯化钙能力可达70000 mg/L,在350 ℃的高温下,质量损失只有17.59%,热稳定性良好。扫描电子显微镜(SEM)测试结果表明,缓速剂在岩石表面成功吸附并形成了一层致密的吸附膜。

     

  • 图  1  酸化缓速剂的红外光谱图

    图  2  酸化缓速剂热重图

    图  3  缓速剂加量对缓速率的影响

    图  4  氯化钙对缓速率的影响

    图  5  酸化缓速剂与添加剂之间的配伍性

    图  6  钙盐对酸岩反应的影响

    图  7  与不同酸液反应后的岩石表面的扫描电镜图

    表  1  单体配比优化

    n(AM)∶n (MS)∶
    n (DMAAC-18)∶
    n (APEG-2400)
    溶蚀率/
    %
    n (AM)∶n (MS)∶
    n (DMAAC-18)∶
    n (APEG-2400)
    溶蚀率/
    %
    10∶70∶1∶19 54.3 75∶5∶1∶19 48.5
    20∶60∶1∶19 56.6 80∶10∶1∶9 44.1
    30∶50∶1∶19 51.8 85∶10∶1∶4 43.7
    40∶40∶1∶19 51.9 85∶5∶1∶9 30.5
    50∶30∶1∶19 52.5 85∶3∶1∶11 36.9
    60∶20∶1∶19 50.4 90∶5∶1∶4 28.3
    70∶10∶1∶19 46.0 90∶7∶1∶2 32.2
    下载: 导出CSV

    表  2  单因素优化

    单体浓度/% 引发剂/% T/℃ t/h 溶蚀率/%
    200.650556.1
    250.650547.6
    300.650545.2
    350.650537.3
    400.650542.2
    350.450552.6
    350.650539.5
    350.850536.1
    351.050531.8
    351.250533.2
    351.035555.0
    351.040552.4
    351.045542.6
    351.050530.3
    351.055532.6
    351.050252.3
    351.050347.2
    351.050433.0
    351.050527.7
    351.050632.5
    下载: 导出CSV

    表  3  不同浓度缓速酸溶液的表观黏度

    序号缓速酸/%AV/mPa·s
    10.31.5
    20.51.5
    30.71.5
    40.91.5
    51.13.0
    61.33.0
    71.53.0
    下载: 导出CSV

    表  4  不同温度下酸化缓速剂的缓速率

    序号T/℃缓速率/%
    15081.56
    27082.87
    39082.57
    410083.02
    511083.21
    下载: 导出CSV

    表  5  不同温度下缓速酸体系的缓速率

    序号T/℃浓度/%缓速率/%
    11001.377.64
    21101.373.99
    下载: 导出CSV
  • [1] 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报,2012,33(S2):166-173.

    WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(S2):166-173.
    [2] 王丽伟, 石阳, 高莹, 等. 我国油气藏增产酸液体系的发展历程及进展[J]. 河南化工,2019,36(7):3-6.

    WANG Liwei, SHI Yang, GAO Ying, et al. Development history and prgress of acid liquid system of oil and gas reservoirs for increasing production in China[J]. Henan Chemical Industry, 2019, 36(7):3-6.
    [3] WU H J, LIU J, WANG X, et al. Research and application of wellbore Fixed-Point acidification unblocking technology for high temperature and high pressure gas wells[C]//International Petroleum Technology Conference. Dhahran, Kingdom of Saudi Arabia, 2020: IPTC-19736-Abstract.
    [4] HAN X L, XIONG C M, YANG Z W, et al. Mechanism of natural fractures opening in ultra-deep fractured reservoir during stimulation[C]//5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future. Okinawa, Japan, 2019: ISRM-YSRM.
    [5] 陈大钧, 陈馥. 油气田应用化学[M]. 北京: 石油工业出版社, 2015.

    CHEN Dajun, CHEN Fu. Applied chemistry of oil and gas fields[M]. Beijing: Petroleum industry press, 2015.
    [6] 王小军, 刘炜, 肖佳林. 耐高温酸液稠化剂的制备及性能研究[J]. 精细石油化工进展,2022,23(5):7-11.

    WANG Xiaojun, LIU Wei, XIAO Jialin. Preparation and properties of high temperature resistant acid thickener[J]. Advances in Fine Petrochemicals, 2022, 23(5):7-11.
    [7] 李晖, 罗斌, 李钦, 等. 耐高温酸液胶凝剂的制备及性能评价[J]. 油田化学,2022,39(4):589-594.

    LI Hui, LUO Bin, LI Qin, et al. Preparation and performance evaluation of acid gelling agent with high temperature resistance[J]. Oilfield Chemistry, 2022, 39(4):589-594.
    [8] GOMAA A M M, NASR-EL-DIN H A A. New insights into the viscosity of polymer-based In-Situ-Gelled acids[J]. SPE Production & Operations, 2010, 25(3):367-375.
    [9] 袁青, 李文杰, 毕研霞, 等. 新型耐温乳化酸的室内研制[J]. 石油化工应用,2015,34(1):111-114. doi: 10.3969/j.issn.1673-5285.2015.01.028

    YUAN Qing, LI Wenjie, BI Yanxia, et al. The experimental research of new emulsified acid with high temperature resistance[J]. Petrochemical Industry Application, 2015, 34(1):111-114. doi: 10.3969/j.issn.1673-5285.2015.01.028
    [10] 姜桂芹, 王国勇, 胡庆贺. 氧化石墨烯纳米粒子提高乳化酸性能实验研究[J]. 应用化工,2020,49(12):3008-3010,3015. doi: 10.3969/j.issn.1671-3206.2020.12.011

    JIANG Guiqin, WANG Guoyong, HU Qinghe. Experimental study on improving the performance of emulsified acid by using graphene oxide (GO) nanoparticles[J]. Applied Chemical Industry, 2020, 49(12):3008-3010,3015. doi: 10.3969/j.issn.1671-3206.2020.12.011
    [11] SAYED M A, NASR-EL-DIN H A, ZHOU J, et al. A new emulsified acid to stimulate deep wells in carbonate reservoirs: coreflood and acid reaction studies[C]//North Africa Technical Conference and Exhibition. Cairo, Egygt, 2012: SPE-151062-MS.
    [12] 马应娴, 田博涵, 毛源, 等. 潜山油藏智能转向酸化技术研究与应用[J]. 钻井液与完井液,2023,40(1):118-124. doi: 10.12358/j.issn.1001-5620.2023.01.016

    MA Yingxian, TIAN Bohan, MAO Yuan, et al. Study and application of an intelligent self-diverting acidizing technology for buried-hill reservoir development[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):118-124. doi: 10.12358/j.issn.1001-5620.2023.01.016
    [13] 全红平, 申鹏, 张磊, 等. 表面活性剂-聚合物自组装酸化转向用聚合物的合成[J]. 精细化工,2023,40(7):1587-1595,1604.

    QUAN Hongping, SHEN Peng, ZHANG Lei, et al. Synthesis of polymer for surfactant-polymer self-assembly acidification[J]. Fine Chemicals, 2023, 40(7):1587-1595,1604.
    [14] 全红平, 甄学乐, 严忠, 等. 非交联酸化自转向剂ADDA的合成及转向性能评价[J]. 精细化工,2022,39(5):1054-1062.

    QUAN Hongping, ZHEN Xuele, YAN Zhong, et al. Synthesis and diverting performance evaluation of non-crosslinked acidification self-diverting agent ADDA[J]. Fine Chemicals, 2022, 39(5):1054-1062.
    [15] 赵珊. 地面交联酸稠化剂合成及其性能评价[D]. 北京: 中国石油大学(北京), 2019.

    ZHAO Shan. The synthesis and performance evaluation of surface cross-linked acid viscosifier[D]. Beijing: China University of Petroleum(Beijing), 2019.
    [16] 全红平, 吴洋, 李欢, 等. 具有吸附作用的酸液缓速外加剂FL-1的研制[J]. 现代化工,2015,35(1):118-121.

    QUAN Hongping, WU Yang, LI Huan, et al. Development of acid retarding additive FL-1 with adsorption property[J]. Modern chemical industry, 2015, 35(1):118-121.
    [17] 邢林庄, 袁玥辉, 叶成, 等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液,2023,40(6):703-710.

    XING Linzhuang, YUAN Yuehui, YE Cheng, et al. Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):703-710.
    [18] 孟小芳, 姜杰, 任继波, 等. 低渗油藏提高采收率研究与应用[J]. 中国石油和化工标准与质量,2021,41(7):103-104. doi: 10.3969/j.issn.1673-4076.2021.07.049

    MENG Xiaofang, JIANG Jie, REN Jibo, et al. Research and application of enhanced oil recovery in low permeability reservoir[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(7):103-104. doi: 10.3969/j.issn.1673-4076.2021.07.049
    [19] 刘杨. 低渗油藏储层伤害与解堵工艺[J]. 石油知识,2021(6):50-51.

    LIU Yang. Reservoir damage and plugging removal technology of low permeability reservoir[J]. Petroleum Knowledge, 2021(6):50-51.
    [20] CHEN Z H, QUAN H P, HUANG Z Y, et al. Investigation of the nonionic acidizing retarder AAO for reservoir stimulation[J]. ACS omega, 2023, 8(42):39041-39051. doi: 10.1021/acsomega.3c03849
    [21] QUAN H P, LU Q Y, CHEN Z H, et al. Adsorption-desorption behaviors of the hydrophobically associating copolymer AM/APEG/C-18/SSS[J]. RSC Advances, 2019, 9(22):12300-12309. doi: 10.1039/C9RA01932D
    [22] 刘京, 于洋洋, 于梦红, 等. 一种吸附型酸化缓速剂的制备及性能研究[J]. 钻井液与完井液,2022,39(1):92-99.

    LIU Jing, YU Yangyang, YU Menghong, et al. Preparation and performance study of an adsorptive retardant for acid job[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):92-99.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  29
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-29
  • 修回日期:  2024-06-04
  • 录用日期:  2024-06-04
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回