An Integrated Bio-Compounded Emulsion and Its Use in SRV Fracturing of Carbonate Rocks with Sand-Carrying Fracturing Fluids
-
摘要: 针对碳酸盐岩体积加砂压裂的难点,以减阻剂速溶、高效增黏和在线变黏一体化为出发点,将小分子改性生物单体与丙烯酰胺、水解度控制单体、微电荷单体等接枝共聚,引入相关功能助剂,制备出有效含量高、功能复合的一体化生物复合乳液,构建高减阻强携砂压裂液体系并制定针对性的用液方案、工艺优化,实现碳酸盐储层控缝高、造复杂缝网、控黏增砂、充分改造的目标。该乳液有效含量、水解度、分子量分别控制在30%左右、40%~50%、1200~1300万,微电荷单体2.0%和小分子生物单体0.6%时性能最优,溶解时间低于20 s,3 min增黏率达90%以上,CAC1,CAC2分别为1.79 g/L、3.89 g/L;对压裂液综合性能评价表明:低黏液、中黏液、高黏液降阻率分别可达75%、70%、60%以上,降阻率保持率96%以上;高黏液、中黏液在110 ℃、170 s−1 剪切 90 min后黏度分别保持在45~50 mPa·s、20~25 mPa·s;中黏液(0.4%)黏弹性表征Tanδ<0.4就具有良好的携砂性能,支撑剂沉降速率低至0.1 cm·s−1;压裂液破胶液黏度低于3 mm2/s,表面张力27 mN/m以下,残渣含量低至20 mg/L以下。该技术在鄂尔多斯盆地碳酸盐岩井进行体积加砂压裂先导实验及规模化应用超过30井次,液体性能稳定,加砂完成率95%以上,取得了良好的增产效果,为致密碳酸盐岩开发提供了强有力的技术手段。Abstract: Using low-molecular-weight modified bio-monomers, acrylamide monomers, hydrolysis control monomers, micro-electric-charged monomers as well as other functional additives, an integrated bio-compounded emulsion is developed through grafting polymerization to deal with the problems encountered in the stimulated-reservoir-volume (SRV) fracturing of carbonate reservoirs with sand-carrying fracturing fluids. In developing the integrated bio-compounded emulsion, focuses are placed on the fast dissolution of the drag reducers used and fast online viscosifying of the fracturing fluid. The integrated bio-compound emulsion developed has high rate of production and multiple functions. Using this integrated bio-compound emulsion, a sand-carrying fracturing fluid of high lubricating capacity high suspending capacity is developed. An optimized specific fracturing program is designed for carbonate reservoir stimulation, aimed at controlling the height of the fractures, producing complex fracture network, controlling viscosity and increasing sand content as well as stimulating the reservoir to the full. The effective concentration, degree of hydrolysis and molecular weight of the emulsion are ±30%, 40%-50% and (1,200-1,300) × 104, respectively. At micro-electric-charged monomers concentration of 2.0% and low- molecular-weight modified bio-monomers concentration of 0.6%, the emulsion produced has the optimum properties; the dissolution time is less then 20 s, the 3-min viscosifying rate is more than 90%, and the CAC1 and CAC2 are 1.79 g/L and 3.89 g/L, respectively. Evaluation of the general performance of the fracturing fluid formulated with the emulsion showed that the percent drag reductions of the low-viscosity fracturing fluid, the medium-viscosity fracturing fluid and the high-viscosity fracturing fluid are at least 75%, 70% and 60%, respectively. The sustained drag reduction can be maintained at 96% or higher. The viscosities of the high-viscosity and the medium-viscosity fracturing fluids which are sheared 90 min at 110 ℃ and 170 s−1 are 45-50 mPa·s and 20-25 mPa·s, respectively. A medium-viscosity fracturing fluid (0.4%) having Tanδ (a parameter characterizing viscoelasticity of a system) of less than 0.4 possesses good sand carrying capacity, the settling rate of the proppants in it can be as low as 0.1 cm/s. The fracturing fluid formulated with the emulsion, after gel breaking, has viscosity of less than 3 mm2/s, surface tension of less than 27 mN/m, and residue content of less than 20 mg/L. This technology has been used in fracturing the carbonate reservoirs in the Ordos Basin on 30 wells, including pilot test and large scale application of SRV fracturing with increased sand content in the fracturing fluid. The fracturing fluids used in the fracturing jobs have stable properties, with 95% of the sanding activity successfully performed and satisfied stimulation effect achieved. This new technology has provided a strong technical support to the development of tight carbonate rock reservoirs.
-
表 1 有效含量对SRY-1相关性能的影响评价
聚合单
体/%乳液有效
含量/%聚合
过程乳液状态 t溶解/
minη0.5%溶液/
mPa·s20.0 18.28 反应慢 流动性好、
轻微分层23 27 25.0 24.15 聚合
正常流动性好、
稳定性好17 42 27.5 27.09 聚合
正常流动性好、
稳定性好13 48 30.0 29.84 聚合
正常流动性好、
稳定性好12 54 32.5 31.83 聚合
正常流动性较好、
稳定性好15 57 35.0 30.89 反应
较快流动性差、
有凝胶24 48 40.0 32.36 暴聚 基本无流动性、
凝胶多表 2 水解度对SRY-1及0.5%SRY-1溶液的影响评价
测试项目 不同水解度SRY-1溶液(0.5%)测试数据 20.3% 30.5% 40.5% 49.8% 59.2% 68.9% 3 min增黏率/% 75.3 78.4 86.6 91.4 93.5 89.9 η30 min/mPa·s 35.1 43.3 50.9 53.7 55.7 56.4 弹性模量
(G')/Pa2.56 4.15 4.75 4.54 3.97 1.98 表 3 微电荷单体、小分子生物单体用量优化测试数据
微电荷单体和小分子
生物单体配比临界缔合
浓度/(g·L−1)储能模量
(G')/PaCAC1 CAC2 0.5%SRY-1溶液 1.5%微电荷+0.5%小分子 2.21 4.82 3.74 1.5%微电荷+0.6%小分子 1.93 4.62 4.08 1.5%微电荷+0.7%小分子 1.92 4.60 4.43 2.0%微电荷+0.5%小分子 2.03 4.21 4.76 2.0%微电荷+0.6%小分子 1.79 3.89 4.97 2.0%微电荷+07%小分子 1.76 3.87 4.83 注:SRY-1有效含量控制在30%±0.5%。 表 4 高减阻强携砂压裂液体系一体化变黏方案
液体类型 低黏液 中黏液 高黏液 乳液浓度/% 0.1~0.3 0.4~0.6 0.7~1.0 η/mPa·s ≤12 ≥30 ≥60 表 5 不同配方压裂液支撑剂沉降速度与黏弹性的关系
压裂液配方 G'/Pa G"/Pa Tanδ 沉降速度/(cm·s−1) 0.05%SRY-1 0.36 0.51 1.42 1.28 0.15%SRY-1 1.02 0.99 0.97 0.36 0.20%SRY-1 1.66 1.13 0.68 0.26 0.40%SRY-1 5.02 1.98 0.39 0.10 0.60%SRY-1 8.05 2.76 0.34 0.02 0.80%SRY-1 10.02 3.20 0.32 0.00 表 6 压裂液破胶液基础数据统计
配方
组分/%T破胶/
℃t破胶/
h运动黏度/
mm2·s−1表面张力/
mN·m−1残渣含量/
mg·L−1SRY-1 APS 0.1 0 90 1.0 2.46 26.84 测不出 0.4 0.01 1.0 1.48 26.38 8.38 0.7 0.02 1.5 1.35 26.07 11.35 0.2 0 110 1.0 2.23 26.66 测不出 0.5 0.005 2.0 1.67 26.31 9.31 0.8 0.015 1.5 1.64 25.85 12.55 -
[1] 周少伟, 高伟, 祖凯, 等. 致密碳酸盐岩储层水力加砂支撑裂缝导流能力实验研究[J]. 油气地质与采收率,2016,23(4):117-121. doi: 10.3969/j.issn.1009-9603.2016.04.019ZHOU Shaowei, GAO Wei, ZU Kai, et al. An experimental research on flow conductivity of propped fracture by hydraulic sand fracturing in tight carbonate gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4):117-121. doi: 10.3969/j.issn.1009-9603.2016.04.019 [2] 孔祥伟, 万雄, 郭照越, 等. 致密砂岩油藏体积压裂技术适应性评价及压裂参数优化[J]. 石油与天然气化工,2023,52(2):81-86. doi: 10.3969/j.issn.1007-3426.2023.02.013KONG Xiangwei, WAN Xiong, GUO Zhaoyue, et al. Adaptive evaluation and optimization of volumetric fracturing parameters in tight sandstone reservoirs[J]. Chemical Engineering of Oil and Gas, 2023, 52(2):81-86. doi: 10.3969/j.issn.1007-3426.2023.02.013 [3] 张晓虎, 于世虎, 周仲建, 等. 页岩气井用乳液型超分子压裂液制备与应用[J]. 钻井液与完井液,2019,36(1):120-125. doi: 10.3969/j.issn.1001-5620.2019.01.023ZHANG Xiaohu, YU Shihu, ZHOU Zhongjian, et al. Preparation and application of an emulsion supramolecular fracturing fluid for shale gas development[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):120-125. doi: 10.3969/j.issn.1001-5620.2019.01.023 [4] 段贵府, 何春明, 才博, 等. 滑溜水在裂缝性碳酸盐岩体积酸压中的研究与应用[J]. 钻井液与完井液,2019,36(4):512-516,521. doi: 10.3969/j.issn.1001-5620.2019.04.021DUAN Guifu, HE Chunming, CAI Bo, et al. Study of slick water and its application in spatial fracturing fractured carbonate formations[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):512-516,521. doi: 10.3969/j.issn.1001-5620.2019.04.021 [5] 罗春鹏. 耐温耐盐型乳液聚合物的合成及性能评价[D]. 北京: 中国石油大学(北京), 2017.LUO Chunpeng. Synthesis and properties of anti-temperature and salt-resistant polymer[D]. Beijing: China University of Petroleum(Beijing), 2017. [6] WANG S B, ZHANG Y Y, GUO J C, et al. A study of relation between suspension behavior and microstructure and viscoelastic property of guar gum fracturing fluid[J]. Journal of Petroleum Science and Engineering, 2014, 124:432-435. doi: 10.1016/j.petrol.2014.09.016 [7] 陈洪, 陆卫婷, 叶仲斌, 等. 水解度对疏水缔合聚丙烯酰胺溶液性质的影响[J]. 油田化学,2012,29(2):190-194.CHEN Hong, LU Weiting, YE Zhongbin, et al. Influence of hydrolysis degree on properties of associating polymers solution[J]. Oilfield Chemistry, 2012, 29(2):190-194. [8] 闫杰, 张涵, 郭志杰, 等. 高分子聚合物稠化剂的制备及其压裂液应用性能研究[J]. 钻井液与完井液,2022,39(1):107-113. doi: 10.12358/j.issn.1001-5620.2022.01.018YAN Jie, ZHANG Han, GUO Zhijie, et al. Preparation of a high molecular weight polymer thickening agent and its use in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):107-113. doi: 10.12358/j.issn.1001-5620.2022.01.018 [9] 王鹏飞, 段明, 李富生. 高分子量水溶性疏水缔合聚合物的合成条件研究[J]. 应用化工,2005,34(11):705-707. doi: 10.3969/j.issn.1671-3206.2005.11.018WANG Pengfei, DUAN Ming, LI Fusheng. Study of polymerization conditions for synthesizing high molecular weight hydrophobically associating water-soluble polymer[J]. Applied Chemical Industry, 2005, 34(11):705-707. doi: 10.3969/j.issn.1671-3206.2005.11.018 [10] 冯茹森, 郭拥军, 张新民, 等. 疏水缔合聚合物分子量分布曲线的测定[J]. 高分子学报,2016(5):621-627. doi: 10.11777/j.issn1000-3304.2016.15269FENG Rusen, GUO Yongjun, ZHANG Xinmin, et al. Determination of molecular weight distribution curves of hydrophobically associated water-soluble polymers[J]. Acta Polymerica Sinica, 2016(5):621-627. doi: 10.11777/j.issn1000-3304.2016.15269 [11] 曹宝格, 陈明强, 罗平亚, 等. 疏水缔合聚合物溶液的临界缔合浓度[J]. 西安石油大学学报(自然科学版),2008,23(4):40-42,48.CAO Baoge, CHEN Mingqiang, LUO Pingya, et al. Study on critical associating concentration of hydrophobic associating polymer solution[J]. Journal of Xi'an Shiyou University(Natural Science), 2008, 23(4):40-42,48. [12] 杜良军, 林波, 孟军, 等. 一种一体化生物复合乳液及其制备方法: CN202211238977.8[P]. 2022-10-11.DU Liangjun, LIN Bo, MENG Jun, et al. An integrated biological composite emulsion and a preparation method thereof: CN202211238977.8[P]. 2022-10-11. [13] 吕其超, 李兆敏, 李宾飞, 等. 新型聚合物压裂液管内携砂性能研究[J]. 特种油气藏,2015(2):101-104. doi: 10.3969/j.issn.1006-6535.2015.02.025LYU Qichao, LI Zhaomin, LI Binfei, et al. Research on proppant carrying capacity of new polymer fracturing fluid in tube[J]. Special Oil & Gas Reservoirs, 2015(2):101-104. doi: 10.3969/j.issn.1006-6535.2015.02.025 [14] 宫大军,吴志明,白岩,等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261.GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261. [15] 戴秀兰,魏俊,闫秀,等. 一种重建井筒用胍胶压裂液的制备及性能[J]. 钻井液与完井液,2024,41(2):262-269.DAI Xiulan, WEI Jun, YAN Xiu, et al. Preparation and properties of a guanidine gel fracturing fluid system for wellbore reconstruction[J]. Drilling Fluid & Completion Fluid , 2024, 41(2):262-269. [16] 闫杰,张涵,郭志杰,等. 高分子聚合物稠化剂的制备及其压裂液应用性能研究[J]. 钻井液与完井液,2022,39(1):107-113.YAN Jie, ZHANG Han, GUO Zhijie, et al. Preparation of a high molecular weight polymer thickening agent and its use in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):107-113. -