Study on an All-in-One Solid-Free Suspension as Flow-Back Fluid for Deep Coal-Bed Methane Development
-
摘要: 由于深层煤层气压裂液返排液矿化度高、成分复杂、难以重复,而目前的悬浮液基压裂液体系固含量较高,易对致密煤层造成严重伤害。因此,该研究以油溶性聚合物ZL-1作为稳定剂,白油作为溶剂,依次添加聚丙烯酰胺减阻剂AE,激活剂异丙醇,转相剂OPE-10,配制无固相一体化悬浮液。利用单因素控制变量法确定各组分种类筛选,并结合正交实验,确定悬浮体系配方为65%白油、1.3%稳定剂、3.25%转相剂、0.455%激活剂、30%减阻剂。评价了悬浮压裂液的综合性能。测试结果表明,在200 g/L矿化度下,无固相悬浮液配制压裂液比与传统含膨润土稳定剂的悬浮液压裂液的表观黏度增加了40%,通过SEM与Zeta电位及纳米粒度分析仪证明:无固相悬浮压裂液的致密层片状结构,具有更好的耐盐屏蔽效应。此外,无固相悬浮压裂液破胶后无残渣,对煤样渗透率的平均伤害率小于15%,可成功应用于深层煤层气高矿化度返排液重复配液。Abstract: The flowback fluid of a fracturing fluid for fracturing formations containing deep buried coalbed methane (CBM) has high salinity and complex components, and is therefore hard to be reused. The suspension based fracturing fluids widely used in present have high solids contents which can cause serious damage to tight coal beds. To deal with these problems, a solids-free integrated suspension has been developed with an oil-soluble polymer ZL-1 as the stabilizer, white oil as the solvent, and into the solvent add the following additives one by one: a polyacrylamide drag-reducer AE, an isopropanol initiator and OPE-10 as the phase change material (PCM). The single-factor control variable method is used in determining the type of each of the components for the reaction; using the orthogonal experiment method, the optimum composition of the suspension is determined as: 65% white oil, 1.3% stabilizer, 3.25% PCM, 0.455%initiator, 30% drag reducer. Results of the evaluation of the general performance of the suspension show that at a salinity of 200 g/L, the apparent viscosity of a fracturing fluid made from the solids-free suspension is 40% higher than the apparent viscosity of a fracturing fluid made from the conventional suspensions containing bentonite stabilizers. SEM analysis, Zeta potential measurement and nanometer particle size analysis prove that the dense layered structure formed in the solids-free suspension fracturing fluid has better salt-resistant shielding effect. Moreover, after gel breaking, the solids-free suspension fracturing fluid has no residue remained, the average permeability damage of the solids-free suspension fracturing fluid to the coal samples is less than 15%, and is therefore reusable in deep coalbed methane fracturing.
-
Key words:
- Coalbed methane /
- Fracturing fluid /
- Fracturing flowback fluid /
- Suspension
-
表 1 聚合物稳定剂含量对悬浮液体系的影响
稳定剂/% 流动性 稳定性 黏度/mPa·s 1.0 很好 差 79 1.3 很好 好 85 1.5 一般 好 84 2.0 差 很好 85 2.5 极差 极好 78 表 2 激活剂、转相剂含量对悬浮液体系的影响
异丙醇/
%OPE-10/
%η/
mPa·s异丙醇/
%OPE-10/
%η/
mPa·s0.325 1.45 74 0.325 3.25 72 0.390 1.45 72 0.390 3.25 73 0.455 1.45 76 0.455 3.25 86 0.520 1.45 83 0.520 3.25 75 0.325 2.35 68 0.325 4.15 69 0.390 2.35 71 0.390 4.15 66 0.455 2.35 72 0.455 4.15 69 0.520 2.35 74 0.520 4.15 69 表 3 煤心渗透率伤害测试结果
编号 注入量/
PV渗透率/
10−3 μm2渗透率/
10−3 μm2渗透率
伤害率 /%1# 0.3 0.90 0.80 7.11 2# 0.5 1.98 1.78 10.23 3# 0.7 1.75 1.52 13.36 表 4 不同浓度悬浮液用返排液配制压裂液的减阻率测试
流量/
L·min−10.1%减阻剂的
减阻率/%0.3%减阻剂的
减阻率/%20 64.5 54.2 25 64.2 60.1 30 66.5 63.4 35 68.9 65.7 40 69.6 67.1 -
[1] YEKEEN N, PADMANABHAN E, IDRIS A K. A review of recent advances in foam-based fracturing fluid application in unconventional reservoirs[J]. Journal of Industrial and Engineering Chemistry, 2018, 66:45-71. doi: 10.1016/j.jiec.2018.05.039 [2] YANG B, ZHAO J Z, MAO J C, et al. Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019, 62:302-313. doi: 10.1016/j.jngse.2018.12.016 [3] ALMUBARAK T, NG J H, NASR–EL–DIN H A. Dual-polymer hydraulic-fracturing fluids: a synergy between polysaccharides and polyacrylamides[J]. SPE Journal, 2019, 24(6):2635-2652. doi: 10.2118/191580-PA [4] ALMUNTASHERI G A. A critical review of Hydraulic-Fracturing fluids for moderate-to Ultralow-Permeability formations over the last decade[J]. SPE Prod & Oper, 2014, 29(4):243-260. [5] 申金伟,袁文奎,赵健,等. 用返排液作基液的压裂液配方研究[J]. 钻井液与完井液,2022,39(2):241-247.SHEN Jinwei, YUAN Wenkui, ZHAO Jian, et al. Study on formulating fracturing fluids with used fracturing fluids for tight gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):241-247 [6] SHI S L, SUN J S, LYU K H, et al. Comparative studies on thickeners as hydraulic fracturing fluids: suspension versus powder[J]. Gels, 2022, 8(11):722. doi: 10.3390/gels8110722 [7] 王鹏祥, 张祥枫, 张丹丹. 水性低伤害悬浮降阻剂体系的研究与应用[J]. 钻井液与完井液,2021,38(4):510-516.WANG Pengxiang, ZHANG Xiangfeng, ZHANG Dandan. Study and application of a low damaging drag reducing hydrophilic suspension[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):510-516. [8] 赵珊珊. 白油基油包水型乳状液稳定性研究[D]. 济南: 山东大学, 2020.ZHAO Shanshan. Studies on stability of white oil-based water-in-oil emulsions[D]. Jinan: Shandong University, 2020. [9] FAKOYA M F, SHAH S N. Rheological properties of surfactant-based and polymeric nano-fluids[C]//Paper presented at the SPE/ICoTA Coiled Tubing & Well Intervention Conference & Exhibition. The Woodlands, Texas, USA, 2013: SPE-163921-MS. [10] 宫大军,吴志明,白岩,等. 低成本耐高温海水基胍胶压裂液[J]. 钻井液与完井液,2024,41(2):256-261. doi: 10.12358/j.issn.1001-5620.2024.02.016GONG Dajun, WU Zhiming, BAI Yan, et al. A low cost high temperature seawater-based guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):256-261. doi: 10.12358/j.issn.1001-5620.2024.02.016 [11] 林海,张成娟,赵文凯,等. 增黏助排一体化聚合物分散液制备及性能评价[J]. 钻井液与完井液,2023,40(5):678-684.LIN Hai, ZHANG Chengjuan, ZHAO Wenkai, et al. Preparation and properties of viscosification and drainage integrated polymer dispersion[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):678-684. -