Mechanisms of Cement Slurry Contamination by Drilling Fluid Filtration Agents and Measures of Preventing the Contamination
-
摘要: 为了解决钻井液对低密度水泥浆的污染问题,必须掌握钻井液处理剂对水泥浆的微观结构、聚集稳定性等性能的影响。选用性能显著的钻井液用抗高温降滤失剂LS-2A作为研究对象,采用单因素分析法研究了LS-2A对水泥浆的性能影响。实验研究表明,LS-2A中的羧酸、羟基、磺酸基官能团会与水泥浆中的Ca2+发生交联生成絮凝物,使水泥石水化产物形成胶凝网状结构,凝胶包裹吸附水泥浆中的自由水,降低水泥浆流动性,抑制水泥浆的早期水化反应速度,降低水泥石的抗压强度。针对LS-2A引起的污染问题,通过双1,6-亚己基三胺五甲叉膦酸(BHMTPMPA)与氧化锌(ZnO)以质量比3∶1复配而成一种抗污染剂。掺入5%抗污染剂后水泥浆流动度由14 cm提升至24 cm。在205 ℃×130 MPa×110 min条件下,水泥浆与钻井液的混合浆体(7∶3)的稠化时间仅51 min,未能满足固井要求。而使用了抗污染剂后的水泥浆、钻井液、隔离液(7∶2∶1)的混浆稠化时间大于300 min。BHMTPMP与ZnO通过与水泥浆中Ca2+反应,在水泥颗粒表面形成保护膜并产生电性斥力作用,成功解决了LS-2A造成的水泥浆污染问题,并在蓬深6井注水泥塞固井施工中成功应用。Abstract: The understanding of the effects of drilling fluid additives on the microstructure and agglomeration stability of cement slurries is necessary to combat the contamination of low-density cement slurries by drilling fluids. Using single-factor analysis, the effects of LS-2A, a drilling fluid filtration reducer, on the properties of a cement slurry are studied. Experimental results show that the functional groups in the molecules of LS-2A, such as the carboxyl, the hydroxyl and the sulfonic group, can react with the Ca2+ ions in the cement slurry through crosslinking to form flocs, resulting in the formation of a gel network structure in the set cement. The gel structure wraps up and absorbs the free water in the cement slurry, reducing the fluidity of the cement slurry, inhibiting the speed of the early stage hydration of the cement slurry, and reducing the compressive strength of the set cement. To deal with the contamination of LS-2A to the cement slurry, a contamination inhibitor is developed by mixing bis (hexamethylene triamine penta (methylene phosphonic acid)) (BHMTPMPA) and zinc oxide (ZnO) in a mass ratio of 3∶1. By adding 5% of the contamination inhibitor into the cement slurry, the fluidity of the cement slurry is increased from 14 cm to 24 cm. At conditions of 205 ℃ × 130 MPa × 110 min, the thickening time of the mixture of the cement slurry and the drilling fluid (7∶3) is only 51 min, unable to satisfy the needs of well cementing. After using the contamination inhibitor, the thickening time of the mixture of the cement slurry, the drilling fluid and a spacer (7∶2∶1) is longer than 300 min. The contamination inhibitor BHMTPMPA and ZnO, by reacting with the Ca2+ ions in the cement slurry, generate a protective film on the surfaces of the cement particles and produce an electric repulsion, thereby successfully prohibiting the contamination to the cement slurry by LS-2A. The contamination inhibitor has been successfully used in running cement plug and cementing the well Pengshen-6.
-
Key words:
- Filtration reducer /
- Contamination /
- Mechanism /
- Contamination inhibitor /
- Drilling fluid
-
表 1 水泥净浆与含LS-2A的水泥浆性能比较
LS-2A/
%ρ/
g·cm−3流动度/
cmp/MPa(60 ℃) p/MPa(90 ℃) 1 d 3 d 7 d 1 d 3 d 7 d 0 1.92 23.8 6.96 9.74 18.79 16.01 23.10 29.03 0.2 1.92 14.0 0.00 9.04 17.48 0.00 18.08 34.96 0.4 1.92 0.00 7.78 10.13 0.00 15.56 20.26 0.6 1.92 0.00 5.29 6.63 0.00 10.58 13.26 注:水泥浆基础配方为100%G级油井水泥+2%降失水剂G33S+0.5%分散剂USZ,水灰比为0.44。 表 2 LS-2A对水泥浆水化累积放热量的影响
样品 不同水化时间(h)下的累积放热量/(J·g−1) 10 20 30 40 50 60 70 纯水泥 108.82 470.60 561.50 579.01 578.85 583.66 620.92 0.2%
LS-2A8.50 318.07 527.90 566.61 586.94 615.28 660.25 变化率/% −92.19 −32.41 −5.98 −2.14 1.40 5.42 6.33 表 3 抗污染剂对混浆流变性影响
水泥
浆/%钻井
液/%抗污染
剂/%φ3 φ6 φ100 φ200 φ300 φ600 n K/
Pa·sn100 0 5 7 17 44 81 110 185 0.553 1.734 95 5 5 5 12 41 78 103 179 0.620 1.093 70 30 5 6 15 42 76 106 181 0.577 1.441 30 70 5 5 14 42 80 108 183 0.612 1.190 5 95 5 4 10 38 72 99 176 0.657 0.829 0 100 5 5 13 42 83 111 186 0.624 1.124 -
[1] 韦彦旭. 固井水泥浆与钻井液接触污染的作用机理[J]. 化工管理,2021(4):195-196.WEI Yanxu. Analysis of contamination mechanism between cement slurry and drilling fluid[J]. Chemical Enterprise Management, 2021(4):195-196. [2] 李明, 杨雨佳, 李早元, 等. 固井水泥浆与钻井液接触污染作用机理[J]. 石油学报,2014,35(6):1188-1196. doi: 10.7623/syxb201406017LI Ming, YANG Yujia, LI Zaoyuan, et al. Mechanism of cement contamination by drilling fluid[J]. Acta Petrolei Sinica, 2014, 35(6):1188-1196. doi: 10.7623/syxb201406017 [3] 马勇, 郭小阳, 姚坤全, 等. 钻井液与水泥浆化学不兼容原因初探[J]. 钻井液与完井液,2010,27(6):46-48. doi: 10.3969/j.issn.1001-5620.2010.06.013MA Yong, GUO Xiaoyang, YAO Kunquan, et al. Research of chemical contamination between drilling fluids and slurry[J]. Drilling Fluid & Completion Fluid, 2010, 27(6):46-48. doi: 10.3969/j.issn.1001-5620.2010.06.013 [4] LI M, XIE D B, SHU Q G, et al. Study on Sodium fatty alcohol polyoxyethyleneether sulfate relieve the contamination of oil well cement with mineral oil-based drilling fluids[J]. Construction and Building Materials, 2018, 163:450-459. doi: 10.1016/j.conbuildmat.2017.12.109 [5] LI Z Y, LIU H H, GUO X Y, et al. Contamination of cement slurries with oil based mud and its components in cementing operations[J]. Journal of Natural Gas Science and Engineering, 2016, 29:160-168. doi: 10.1016/j.jngse.2016.01.003 [6] DAVOODI S, AL-SHARGABI M, WOOD D A, et al. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review[J]. Journal of Molecular Liquids, 2023, 371:121117. doi: 10.1016/j.molliq.2022.121117 [7] ZHENG Y Z, SHE C Y, YAO K Q, et al. Contamination effects of drilling fluid additives on cement slurry[J]. Natural Gas Industry B, 2015, 2(4):354-359. doi: 10.1016/j.ngib.2015.09.009 [8] 郑友志, 佘朝毅, 姚坤全, 等. 钻井液处理剂对固井水泥浆的污染影响[J]. 天然气工业,2015,35(4):76-81. doi: 10.3787/j.issn.1000-0976.2015.04.012ZHENG Youzhi, SHE Chaoyi, YAO Kunquan, et al. Contamination effects of drilling fluid additives on cement slurry[J]. Natural Gas Industry, 2015, 35(4):76-81. doi: 10.3787/j.issn.1000-0976.2015.04.012 [9] 陈翔宇, 李建元, 沈栋. 固井水泥浆与钻井液接触污染作用探讨[J]. 石化技术,2023,30(1):70-72. doi: 10.3969/j.issn.1006-0235.2023.01.024CHEN Xiangyu, LI Jianyuan, SHEN Dong. Discussion on the contact pollution effect of well mud and drilling fluid[J]. Petrochemical Industry Technology, 2023, 30(1):70-72. doi: 10.3969/j.issn.1006-0235.2023.01.024 [10] 李晓春, 李宁, 刘锐, 等. 有机盐钻井液与水泥浆接触污染机理探讨及防止对策[J]. 钻采工艺,2019,42(6):102-104,109. doi: 10.3969/J.ISSN.1006-768X.2019.06.29LI Xiaochun, LI Ning, LIU Rui, et al. Discussion on the mechanism of contact pollution between organic salt drilling fluid and cement slurry and prevention measures[J]. Drilling & Production Technology, 2019, 42(6):102-104,109. doi: 10.3969/J.ISSN.1006-768X.2019.06.29 [11] 易亚军. 常用钻井液处理剂对固井水泥浆的污染研究[D]. 成都: 西南石油大学, 2014.YI Yajun. Study on pollution of common drilling fluid treating agent to cementing slurry[D]. Chengdu: Southwest Petroleum University, 2014. [12] LI M, OU H J, LI Z Y, et al. Contamination of cement slurries with diesel-based drilling fluids in a shale gas well[J]. Journal of Natural Gas Science and Engineering, 2015, 27, Part 3: 1312-1320. [13] 屈建省, 安耀彬, 刘翠微, 等. GB/T 19139-2012. 油井水泥试验方法[S]. 北京: 中国标准出版社, 2012.QU Jiansheng, AN Yaobin, LIU Cuiwei, et al. GB/T 19139-2012. Testing of well cements[S]. Beijing: Standards Press of China, 2012. [14] 刘建洋. 基于红外光谱技术的沥青品牌辨识推广应用[J]. 公路交通科技(应用技术版),2018,14(9):136-137.LIU Jianyang. Promotion and application of asphalt brand identification based on infrared spectroscopy[J]. Highway Traffic Science and Technology(Applied Technology Edition), 2018, 14(9):136-137. [15] 王斌, 陈集, 饶小桐. 现代分析测试方法[M]. 北京: 石油工业出版社, 2008.WANG Bin, CHEN Ji, RAO Xiaotong. Modern analysis and testing methods[M]. Beijing: Petroleum industry press, 2008. [16] 刘喆. 三种典型基团与水OH伸缩振动相互作用的研究[D]. 长春: 吉林大学, 2021.LIU Zhe. Investigation of the interaction between three typical groups and OH stretching vibration of water[D]. Changchun: Jilin University, 2021. [17] 刘素丽, 陈建波, 周群, 等. 黄芩采收季节的红外光谱三级鉴别与主成分分析[J]. 光谱学与光谱分析,2012,32(10):2669-2673. doi: 10.3964/j.issn.1000-0593(2012)10-2669-05LIU Suli, CHEN Jianbo, ZHOU Qun, et al. Analysis of the harvest seasons of scutellaria baicalensis georgi by Tri-Step identification of infrared spectroscopy and principal component analysis[J]. Spectroscopy and Spectral Analysis, 2012, 32(10):2669-2673. doi: 10.3964/j.issn.1000-0593(2012)10-2669-05 [18] 金雯. 固定化Cu(salen)-锅法催转化硫酸盐木素的研究[D]. 昆明: 昆明理工大学, 2019.JIN Wen. Study on conversion of sulfate lignin by immobilized Cu(salen)-pot process[D]. Kunming: Kunming University of Science and Technology, 2019. [19] 岳莉, 陈召, 赖仕全, 等. 煤系针状焦原料在成焦过程中的红外光谱定量分析[J]. 光谱学与光谱分析,2020,40(8):2468-2473.YUE Li, CHEN Zhao, LAI Shiquan, et al. Infrared spectroscopic quantitative analysis of raw material used as Coal-Based needle coke in the coking process[J]. Spectroscopy and Spectral Analysis, 2020, 40(8):2468-2473. [20] ZHANG W Y, MA Y, YANG R Y, et al. Effects of ethylene diamine tetraacetic acid and Calcium nitrate on high-temperature cementing slurry in a large temperature difference environment[J]. Construction and Building Materials, 2023, 368:130387. doi: 10.1016/j.conbuildmat.2023.130387 -