留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钻井液降滤失剂与水泥浆接触污染机理及防止对策

杨兆亮 刘森 沈欣宇 罗越耀 张玉婷

杨兆亮,刘森,沈欣宇,等. 钻井液降滤失剂与水泥浆接触污染机理及防止对策[J]. 钻井液与完井液,2024,41(6):792-799 doi: 10.12358/j.issn.1001-5620.2024.06.013
引用本文: 杨兆亮,刘森,沈欣宇,等. 钻井液降滤失剂与水泥浆接触污染机理及防止对策[J]. 钻井液与完井液,2024,41(6):792-799 doi: 10.12358/j.issn.1001-5620.2024.06.013
YANG Zhaoliang, LIU Sen, SHEN Xinyu, et al.Mechanisms of cement slurry contamination by drilling fluid filtration agents and measures of preventing the contamination[J]. Drilling Fluid & Completion Fluid,2024, 41(6):792-799 doi: 10.12358/j.issn.1001-5620.2024.06.013
Citation: YANG Zhaoliang, LIU Sen, SHEN Xinyu, et al.Mechanisms of cement slurry contamination by drilling fluid filtration agents and measures of preventing the contamination[J]. Drilling Fluid & Completion Fluid,2024, 41(6):792-799 doi: 10.12358/j.issn.1001-5620.2024.06.013

钻井液降滤失剂与水泥浆接触污染机理及防止对策

doi: 10.12358/j.issn.1001-5620.2024.06.013
基金项目: 中石油集团公司重大专项“海相碳酸盐岩油气规模增储上产与勘探开发技术研究”(2023ZZ16)。
详细信息
    作者简介:

    杨兆亮,高级工程师,硕士,1985年生,毕业于中国石油大学(华东)油气井工程专业,现在从事钻井技术研究工作。电话18384232018;E-mail:yangzl2018@petrochina.com.cn

    通讯作者:

    刘森,工程师,硕士,1994年生,毕业于西南石油大学油气井工程专业,现在从事固井技术研究工作。E-mail:lius2020@petrochina.com.cn

  • 中图分类号: TE256

Mechanisms of Cement Slurry Contamination by Drilling Fluid Filtration Agents and Measures of Preventing the Contamination

  • 摘要: 为了解决钻井液对低密度水泥浆的污染问题,必须掌握钻井液处理剂对水泥浆的微观结构、聚集稳定性等性能的影响。选用性能显著的钻井液用抗高温降滤失剂LS-2A作为研究对象,采用单因素分析法研究了LS-2A对水泥浆的性能影响。实验研究表明,LS-2A中的羧酸、羟基、磺酸基官能团会与水泥浆中的Ca2+发生交联生成絮凝物,使水泥石水化产物形成胶凝网状结构,凝胶包裹吸附水泥浆中的自由水,降低水泥浆流动性,抑制水泥浆的早期水化反应速度,降低水泥石的抗压强度。针对LS-2A引起的污染问题,通过双1,6-亚己基三胺五甲叉膦酸(BHMTPMPA)与氧化锌(ZnO)以质量比3∶1复配而成一种抗污染剂。掺入5%抗污染剂后水泥浆流动度由14 cm提升至24 cm。在205 ℃×130 MPa×110 min条件下,水泥浆与钻井液的混合浆体(7∶3)的稠化时间仅51 min,未能满足固井要求。而使用了抗污染剂后的水泥浆、钻井液、隔离液(7∶2∶1)的混浆稠化时间大于300 min。BHMTPMP与ZnO通过与水泥浆中Ca2+反应,在水泥颗粒表面形成保护膜并产生电性斥力作用,成功解决了LS-2A造成的水泥浆污染问题,并在蓬深6井注水泥塞固井施工中成功应用。

     

  • 图  1  钻井液单剂LS-2A的红外测试图谱

    图  2  LS-2A在水泥浆滤液中的聚集稳定性

    图  3  LS-2A对水泥浆滤液微观形貌的影响

    图  4  LS-2A对水泥浆水化放热的影响

    图  5  水泥净浆与掺LS-2A水泥浆在不同时间下的微观形貌

    图  6  掺入LS-2A前后XRD衍射图谱

    图  7  双1,6-亚己基三胺五甲叉膦酸(BHMTPMPA)的分子结构

    图  8  降污染剂对混浆稠化时间的影响

    图  9  抗污染剂对掺LS-2A水泥浆流动性的影响

    图  10  抗污染剂对水泥浆体微观形貌的影响

    图  11  抗污染剂对水泥石水化产物   组分影响的XRD分析结果

    图  12  稠化时间相容实验结果

    表  1  水泥净浆与含LS-2A的水泥浆性能比较

    LS-2A/
    %
    ρ/
    g·cm−3
    流动度/
    cm
    p/MPa(60 ℃) p/MPa(90 ℃)
    1 d 3 d 7 d 1 d 3 d 7 d
    0 1.92 23.8 6.96 9.74 18.79 16.01 23.10 29.03
    0.2 1.92 14.0 0.00 9.04 17.48 0.00 18.08 34.96
    0.4 1.92 0.00 7.78 10.13 0.00 15.56 20.26
    0.6 1.92 0.00 5.29 6.63 0.00 10.58 13.26
      注:水泥浆基础配方为100%G级油井水泥+2%降失水剂G33S+0.5%分散剂USZ,水灰比为0.44。
    下载: 导出CSV

    表  2  LS-2A对水泥浆水化累积放热量的影响

    样品 不同水化时间(h)下的累积放热量/(J·g−1)
    10 20 30 40 50 60 70
    纯水泥 108.82 470.60 561.50 579.01 578.85 583.66 620.92
    0.2%
    LS-2A
    8.50 318.07 527.90 566.61 586.94 615.28 660.25
    变化率/% −92.19 −32.41 −5.98 −2.14 1.40 5.42 6.33
    下载: 导出CSV

    表  3  抗污染剂对混浆流变性影响

    水泥
    浆/%
    钻井
    液/%
    抗污染
    剂/%
    φ3 φ6 φ100 φ200 φ300 φ600 n K/
    Pa·sn
    100 0 5 7 17 44 81 110 185 0.553 1.734
    95 5 5 5 12 41 78 103 179 0.620 1.093
    70 30 5 6 15 42 76 106 181 0.577 1.441
    30 70 5 5 14 42 80 108 183 0.612 1.190
    5 95 5 4 10 38 72 99 176 0.657 0.829
    0 100 5 5 13 42 83 111 186 0.624 1.124
    下载: 导出CSV
  • [1] 韦彦旭. 固井水泥浆与钻井液接触污染的作用机理[J]. 化工管理,2021(4):195-196.

    WEI Yanxu. Analysis of contamination mechanism between cement slurry and drilling fluid[J]. Chemical Enterprise Management, 2021(4):195-196.
    [2] 李明, 杨雨佳, 李早元, 等. 固井水泥浆与钻井液接触污染作用机理[J]. 石油学报,2014,35(6):1188-1196. doi: 10.7623/syxb201406017

    LI Ming, YANG Yujia, LI Zaoyuan, et al. Mechanism of cement contamination by drilling fluid[J]. Acta Petrolei Sinica, 2014, 35(6):1188-1196. doi: 10.7623/syxb201406017
    [3] 马勇, 郭小阳, 姚坤全, 等. 钻井液与水泥浆化学不兼容原因初探[J]. 钻井液与完井液,2010,27(6):46-48. doi: 10.3969/j.issn.1001-5620.2010.06.013

    MA Yong, GUO Xiaoyang, YAO Kunquan, et al. Research of chemical contamination between drilling fluids and slurry[J]. Drilling Fluid & Completion Fluid, 2010, 27(6):46-48. doi: 10.3969/j.issn.1001-5620.2010.06.013
    [4] LI M, XIE D B, SHU Q G, et al. Study on Sodium fatty alcohol polyoxyethyleneether sulfate relieve the contamination of oil well cement with mineral oil-based drilling fluids[J]. Construction and Building Materials, 2018, 163:450-459. doi: 10.1016/j.conbuildmat.2017.12.109
    [5] LI Z Y, LIU H H, GUO X Y, et al. Contamination of cement slurries with oil based mud and its components in cementing operations[J]. Journal of Natural Gas Science and Engineering, 2016, 29:160-168. doi: 10.1016/j.jngse.2016.01.003
    [6] DAVOODI S, AL-SHARGABI M, WOOD D A, et al. Thermally stable and salt-resistant synthetic polymers as drilling fluid additives for deployment in harsh sub-surface conditions: A review[J]. Journal of Molecular Liquids, 2023, 371:121117. doi: 10.1016/j.molliq.2022.121117
    [7] ZHENG Y Z, SHE C Y, YAO K Q, et al. Contamination effects of drilling fluid additives on cement slurry[J]. Natural Gas Industry B, 2015, 2(4):354-359. doi: 10.1016/j.ngib.2015.09.009
    [8] 郑友志, 佘朝毅, 姚坤全, 等. 钻井液处理剂对固井水泥浆的污染影响[J]. 天然气工业,2015,35(4):76-81. doi: 10.3787/j.issn.1000-0976.2015.04.012

    ZHENG Youzhi, SHE Chaoyi, YAO Kunquan, et al. Contamination effects of drilling fluid additives on cement slurry[J]. Natural Gas Industry, 2015, 35(4):76-81. doi: 10.3787/j.issn.1000-0976.2015.04.012
    [9] 陈翔宇, 李建元, 沈栋. 固井水泥浆与钻井液接触污染作用探讨[J]. 石化技术,2023,30(1):70-72. doi: 10.3969/j.issn.1006-0235.2023.01.024

    CHEN Xiangyu, LI Jianyuan, SHEN Dong. Discussion on the contact pollution effect of well mud and drilling fluid[J]. Petrochemical Industry Technology, 2023, 30(1):70-72. doi: 10.3969/j.issn.1006-0235.2023.01.024
    [10] 李晓春, 李宁, 刘锐, 等. 有机盐钻井液与水泥浆接触污染机理探讨及防止对策[J]. 钻采工艺,2019,42(6):102-104,109. doi: 10.3969/J.ISSN.1006-768X.2019.06.29

    LI Xiaochun, LI Ning, LIU Rui, et al. Discussion on the mechanism of contact pollution between organic salt drilling fluid and cement slurry and prevention measures[J]. Drilling & Production Technology, 2019, 42(6):102-104,109. doi: 10.3969/J.ISSN.1006-768X.2019.06.29
    [11] 易亚军. 常用钻井液处理剂对固井水泥浆的污染研究[D]. 成都: 西南石油大学, 2014.

    YI Yajun. Study on pollution of common drilling fluid treating agent to cementing slurry[D]. Chengdu: Southwest Petroleum University, 2014.
    [12] LI M, OU H J, LI Z Y, et al. Contamination of cement slurries with diesel-based drilling fluids in a shale gas well[J]. Journal of Natural Gas Science and Engineering, 2015, 27, Part 3: 1312-1320.
    [13] 屈建省, 安耀彬, 刘翠微, 等. GB/T 19139-2012. 油井水泥试验方法[S]. 北京: 中国标准出版社, 2012.

    QU Jiansheng, AN Yaobin, LIU Cuiwei, et al. GB/T 19139-2012. Testing of well cements[S]. Beijing: Standards Press of China, 2012.
    [14] 刘建洋. 基于红外光谱技术的沥青品牌辨识推广应用[J]. 公路交通科技(应用技术版),2018,14(9):136-137.

    LIU Jianyang. Promotion and application of asphalt brand identification based on infrared spectroscopy[J]. Highway Traffic Science and Technology(Applied Technology Edition), 2018, 14(9):136-137.
    [15] 王斌, 陈集, 饶小桐. 现代分析测试方法[M]. 北京: 石油工业出版社, 2008.

    WANG Bin, CHEN Ji, RAO Xiaotong. Modern analysis and testing methods[M]. Beijing: Petroleum industry press, 2008.
    [16] 刘喆. 三种典型基团与水OH伸缩振动相互作用的研究[D]. 长春: 吉林大学, 2021.

    LIU Zhe. Investigation of the interaction between three typical groups and OH stretching vibration of water[D]. Changchun: Jilin University, 2021.
    [17] 刘素丽, 陈建波, 周群, 等. 黄芩采收季节的红外光谱三级鉴别与主成分分析[J]. 光谱学与光谱分析,2012,32(10):2669-2673. doi: 10.3964/j.issn.1000-0593(2012)10-2669-05

    LIU Suli, CHEN Jianbo, ZHOU Qun, et al. Analysis of the harvest seasons of scutellaria baicalensis georgi by Tri-Step identification of infrared spectroscopy and principal component analysis[J]. Spectroscopy and Spectral Analysis, 2012, 32(10):2669-2673. doi: 10.3964/j.issn.1000-0593(2012)10-2669-05
    [18] 金雯. 固定化Cu(salen)-锅法催转化硫酸盐木素的研究[D]. 昆明: 昆明理工大学, 2019.

    JIN Wen. Study on conversion of sulfate lignin by immobilized Cu(salen)-pot process[D]. Kunming: Kunming University of Science and Technology, 2019.
    [19] 岳莉, 陈召, 赖仕全, 等. 煤系针状焦原料在成焦过程中的红外光谱定量分析[J]. 光谱学与光谱分析,2020,40(8):2468-2473.

    YUE Li, CHEN Zhao, LAI Shiquan, et al. Infrared spectroscopic quantitative analysis of raw material used as Coal-Based needle coke in the coking process[J]. Spectroscopy and Spectral Analysis, 2020, 40(8):2468-2473.
    [20] ZHANG W Y, MA Y, YANG R Y, et al. Effects of ethylene diamine tetraacetic acid and Calcium nitrate on high-temperature cementing slurry in a large temperature difference environment[J]. Construction and Building Materials, 2023, 368:130387. doi: 10.1016/j.conbuildmat.2023.130387
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  70
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-06-29
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回