Preparation and Performance Evaluation of Well cementing Fluid Loss Additive by Dispersion Polymerization Method
-
摘要: 针对水溶液聚合以及反相乳液聚合的弊端,首次报道了一种通过分散聚合制备固井降失水剂C-FL72L的方法。其中,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、富马酸(FA)、N,N-二甲基丙烯酰胺(DMA)为聚合单体,季戊四醇三烯丙基醚(APE)为交联剂,聚乙烯吡咯烷酮(PVP-K30)为稳定剂,固含量为33%。对分散聚合的反应动力学进行了考察,反应4 h转化率可达98.9%。通过红外光谱测试、热重分析、高效液相色谱分析、凝胶渗透色谱分析等表征手段,表明所有单体充分且完全聚合,降失水剂耐温超过300 ℃,分子量可达77.2万。对样品在水泥浆中的应用性能进行了评价,在210 ℃下,可将失水控制在50 mL以内,水泥浆流变性能、稠化性能、抗压强度等水泥浆综合工程性能良好。并对使用新合成方法制备的降失水剂的作用机理进行了探讨。降失水剂C-FL72L在高密度、低密度、树脂、胶乳、盐水等功能水泥浆体系中综合应用性能优异,有着广阔的应用前景。Abstract: In view of the disadvantages of aqueous solution polymerization and inverse emulsion polymerization, herein we report for the first time preparation of a cementing fluid loss additive C-FL72L through dispersion polymerization, in which acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), fumaric acid (FA), N,N-dimethylacrylamide (DMA) are used as monomers, pentaerythritoltriallyl ether is used as crosslinker, and polyvinylpyrrolidone (PVP-K30) is used as stabilizer. The reaction kinetics of dispersed polymerization were investigated, and the conversion rate reached 98.9% after 4 hours of reaction. By means of infrared spectrum test, thermogravimetric analysis, high-performance liquid chromatography, gel permeation chromatography and other characterization methods, it is shown that all monomers are fully and completely polymerized, the temperature resistance of the fluid loss additive exceeds 300 ℃, and the molecular weight can reach 772,000. In the performance evaluation of cement slurry, fluid loss can be controlled within 40 mL at 150 ℃, and the engineering properties of cement slurry, such as rheological properties, thickening properties, and compressive strength, are excellent. The mechanism of the fluid loss additive is also discussed. The fluid loss additive C-FL72L has excellent application performance in functional cement slurry systems such as high-density, low-density, resin, latex, saline water, and has broad application prospects.
-
表 1 降失水剂C-FL72L的分子量和分子量分布
样品名 数均分子
量/kDa重均分子
量/kDa分子量
分布t出峰/min C-FL72L 366.8 772 2.105 19.95~36.14 表 2 C-FL72L加量2.5%下的水泥浆在不同温度下的流变性和失水性能
T/℃ C-FL72L/% φ3/φ6/φ100/φ200/φ300/φ600 FLAPI /mL 30 2.5 8/14/130/212/287 18 50 2.5 6/9/95/157/211 20 70 2.5 5/8/83/132/177 27 90 2.5 6/10/69/118/149 31 注:游离液均为0;不同温度下水泥浆均不沉降。 表 3 高温下水泥浆失水量与降失水剂加量变化
C-FL72L/% T/℃ FLAPI/mL Δρ水泥石/(g·cm−3) 4.0 100 18 0.013 110 25 0.012 5.0 120 19 0.012 130 29 0.014 5.5 140 24 0.016 150 33 0.017 6.0 180 36 0.018 200 47 0.018 6.5 210 43 0.019 表 4 水泥浆在不同温度下的稠化时间
T/℃ C-R21L/R42L/g t稠化/min t过渡/min 60 1 154 12 60 2 198 15 60 3 247 13 90 2 189 9 90 3 240 9 90 4 305 8 120 9 192 6 120 12 264 7 120 15 312 6 150 12 192 5 150 15 268 5 150 18 323 6 180 18 216 5 180 21 330 5 210 21 203 3 210 24 275 3 注:90 ℃及以下温度使用缓凝剂C-R21L,温度超过90 ℃使用缓凝剂C-R42L。 表 5 不同温度下水泥石抗压强度
水泥浆 ρ/(g·cm−3) T/℃ p/MPa 1# 1.9 40 18.3 1# 1.9 50 19.8 1# 1.9 70 22.9 1# 1.9 90 24.6 2# 1.9 100 23.5 2# 1.9 110 24.9 2# 1.9 120 24.3 3# 1.9 130 25.7 3# 1.9 140 26.1 3# 1.9 150 29.4 4# 1.9 180 32.4 4# 1.9 210 36.8 表 6 不同水泥浆综合性能评价
水泥
浆T/
℃ρ/
g·cm−3t下灰/
sFLAPI/
mLt稠化/
minp24 h/
MPa游离液/
%5# 210 2.2 33 45 347 24 0 6# 140 1.68 23 40 349 21 0 7# 140 1.9 20 25 262 26 0 8# 200 1.9 43 32 341 35 0 9# 150 2.2 31 45 306 24 0 -
[1] 罗宇维, 肖伟, 赵军. “十三五”中国海油固井技术研究进展与发展建议[J]. 中国海上油气,2020,32(5):145-151.LUO Yuwei, XIAO Wei, ZHAO Jun. Research progresses and development suggestions of CNOOC cementing technology during the "13th Five-Year Plan"[J]. China Offshore Oil and Gas, 2020, 32(5):145-151. [2] 罗宇维, 陈良, 罗东辉, 等. 深水高压井负压力窗口固井关键技术[J]. 中国海上油气,2016,28(4):83-87.LUO Yuwei, CHEN Liang, LUO Donghui, et al. Key technology for negative pressure-window cementing in high pressure deep water walls[J]. China Offshore Oil and Gas, 2016, 28(4):83-87. [3] 喻文娟, 郭锦棠, 郭春, 等. 耐盐降失水剂AMPS/DMAA/IA的合成及其性能评价[J]. 化学工艺与工程,2018,35(1):45-50.YU Wenjuan, GUO Jintang, GUO Chun, et al. Synthesis and performance evaluation of Salt-Resistant fluid loss additive AMPS/DMAA/IA[J]. Chemical industry and engineer, 2018, 35(1):45-50. [4] 韩亮, 唐欣, 杨远光, 等. 新型两性离子固井降失水剂的合成与性能评价[J]. 钻井液与完井液,2018,35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014HAN Liang, TANG Xin, YANG Yuanguang, et al. Synthesis and evaluation of a new amphoteric filter loss reducer for cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014 [5] MAO H, QIU Z S, SHEN Z H, et al. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature[J]. Journal of Petroleum Science and Engineering, 2015, 129:1-14. doi: 10.1016/j.petrol.2015.03.003 [6] 张健, 彭志刚, 邹长军, 等. 聚合物基纳米SiO2复合微球固井降失水剂的合成及表征[J]. 硅酸盐学报,2017,45(11):1649-1657.ZHANG Jian, PENG Zhigang, ZOU Changjun, et al. Synthesis and characterization of composite polymer microspheres based Nano-Silica for cementing fluid loss additive[J]. Journal of the Chinese Ceramic Society, 2017, 45(11):1649-1657. [7] CAO L, GUO J T, TIAN J H, et al. Synthesis, characterization and working mechanism of a novel sustained-release-type fluid loss additive for seawater cement slurry[J]. Journal of Colloid and Interface Science, 2018, 524:434-444. doi: 10.1016/j.jcis.2018.03.079 [8] 邹亦玮, 王义昕. 抗盐固井降失水剂的研究进展[J]. 辽宁化工,2022,51(3):410-413. doi: 10.3969/j.issn.1004-0935.2022.03.033ZOU Yiwei, WANG Yixin. Research progress of salt resistant cementing fluid loss additive[J]. Liaoning Chemical Industry, 2022, 51(3):410-413. doi: 10.3969/j.issn.1004-0935.2022.03.033 [9] 林鑫,刘硕琼,夏修建,等. 热引发聚合方法制备抗240 ℃水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104. doi: 10.12358/j.issn.1001-5620.2024.01.011LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240 ℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104. doi: 10.12358/j.issn.1001-5620.2024.01.011 [10] XU Y, YU Y J, LIU M, et al. Synthesis and working mechanism of fluid loss additive by freeze-drying method[J]. Polymer-plastics technology and materials, 2020, 59(13):1417-1428. doi: 10.1080/25740881.2020.1744010 [11] LI M, XIAO W Y, ZHANG H, et al. An effective salt-tolerant fluid loss additive-suitable for high temperature oil well cement[J]. Journal of Dispersion Science and Technology, 2021, 42(5):730-741. doi: 10.1080/01932691.2019.1709494 [12] 郭锦棠, 刘振兴, 何军, 等. 新型耐温抗盐降失水剂LX-1的研制与性能评价[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):318-323.GUO Jintang, LIU Zhenxing, HE Jun, et al. Synthesis and properties of a new High-Temperature and Salt-Resistant fluid loss additive LX-1[J]. Journal of Tianjin University Science and Technology, 2021, 54(3):318-323. [13] 李晓岚, 郑志军, 郭鹏. 高温油井水泥降失水剂ZFA-1的合成及性能[J]. 钻井液与完井液,2020,37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013 [14] 李子轩. P (AMPS-DMAA-MEP)三元共聚降失水剂的制备及其性能研究[J]. 塑料工业,2020,48(1):157-160. doi: 10.3969/j.issn.1005-5770.2020.01.034LI Zixuan. Preparation and properties of P(AMPS-DMAA-MEP) ternary copolymerization water loss reducing agent[J]. China Plastics Industry, 2020, 48(1):157-160. doi: 10.3969/j.issn.1005-5770.2020.01.034 [15] 邹双, 熊钰丹, 张天意, 等. 盐膏层固井用降失水剂的研究与应用[J]. 钻井液与完井液,2021,38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017ZOU Shuang, XIONG Yudan, ZHANG Tianyi, et al. Study and application of fluid loss additive used in cement slurries for cementing salt-gypsum stratum[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017 [16] 李雨威, 黄志宇. 抗高温油井水泥降失水剂SZ1-1的研制与应用[J]. 钻采工艺,2018,41(6):94-97. doi: 10.3969/J.ISSN.1006-768X.2018.06.27LI Yuwei, HUANG Zhiyu. Development and application of high temperature oil well cement filtrate reducer SZ1[J]. Drilling & Production Technology, 2018, 41(6):94-97. doi: 10.3969/J.ISSN.1006-768X.2018.06.27 [17] 刘欢, 曾雪玲, 李文研, 等. 新型抗温耐盐聚合物降失水剂的制备及性能研究[J]. 现代化工,2023,43(1):226-233.LIU Huan, ZENG Xueling, LI Wenyan, et al. Preparation and properties of a novel temperature-and salt-resistant polymer fluid loss reducer[J]. Modern chemical industry, 2023, 43(1):226-233. [18] 郭子涵, 李明, 杨燕, 等. 近年来油井水泥降失水剂研究现状概述[J]. 现代化工,2015,35(10):49-53.GUO Zihan, LI Ming, YANG Yan, et al. Current status of fluid loss reducers for oil well cement in recent years[J]. Modern chemical industry, 2015, 35(10):49-53. [19] 胡昊, 高榕, 刘东兵. 分散聚合研究进展[J]. 石油化工,2021,50(11):1194-1201. doi: 10.3969/j.issn.1000-8144.2021.11.012HU Hao, GAO Rong, LIU Dongbing. Progress in dispersion polymerization[J]. Petrochemical Technology, 2021, 50(11):1194-1201. doi: 10.3969/j.issn.1000-8144.2021.11.012 [20] WANG K, WANG Y X, ZHANG W Q. Synthesis of diblock copolymer nano-assemblies by Pisa under dispersion polymerization: comparison between ATRP and RAFT[J]. Polymer Chemistry, 2017, 8(41):6407-6415. doi: 10.1039/C7PY01618B [21] WANG Y X, HAN G, DUAN W F, et al. ICAR ATRP in PEG with Low Concentration of Cu(II) Catalyst: a Versatile Method for Synthesis of Block Copolymer Nanoassemblies under Dispersion Polymerization[J]. Macromolecular Rapid Communications, 2019, 40(2):e1800140. doi: 10.1002/marc.201800140 [22] 于永金, 张航, 夏修建, 等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液,2022,39(3):352-358.YU Yongjin, ZHANG Hang, XIA Xiujian, et a1. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):352-358 [23] 王其可,刘文明,凌勇,等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液,2023,40(5):629-636.WANG Qike, LIU Wenming, LING Yong, et al. The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):629-636 [24] 夏修建,李鹏鹏,于永金,等. 侧链对油井水泥降失水剂性能的影响及机理研究[J]. 钻井液与完井液,2022,39(6):748-753.XIA Xiujian, LI Pengpeng, YU Yongjin, et al. Effects of polymer sidechains on performance of oil well cement filter loss reducers and studies on mechanisms of the effects[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):748-753 -