留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分散聚合法制备固井降失水剂及性能研究

邹亦玮 王义昕 朱思佳 宋维凯 罗宇维 汤雨霖

邹亦玮,王义昕,朱思佳,等. 分散聚合法制备固井降失水剂及性能研究[J]. 钻井液与完井液,2024,41(6):784-791 doi: 10.12358/j.issn.1001-5620.2024.06.012
引用本文: 邹亦玮,王义昕,朱思佳,等. 分散聚合法制备固井降失水剂及性能研究[J]. 钻井液与完井液,2024,41(6):784-791 doi: 10.12358/j.issn.1001-5620.2024.06.012
ZOU Yiwei, WANG Yixin, ZHU Sijia, et al.Preparation and performance evaluation of well cementing fluid loss additive by dispersion polymerization method[J]. Drilling Fluid & Completion Fluid,2024, 41(6):784-791 doi: 10.12358/j.issn.1001-5620.2024.06.012
Citation: ZOU Yiwei, WANG Yixin, ZHU Sijia, et al.Preparation and performance evaluation of well cementing fluid loss additive by dispersion polymerization method[J]. Drilling Fluid & Completion Fluid,2024, 41(6):784-791 doi: 10.12358/j.issn.1001-5620.2024.06.012

分散聚合法制备固井降失水剂及性能研究

doi: 10.12358/j.issn.1001-5620.2024.06.012
基金项目: 中海油服揭榜挂帅项目“海水基固井关键外加剂的开发与机理研究”(YHB23YF004)部分研究成果。
详细信息
    作者简介:

    邹亦玮,工程师,主要从事固井技术研究和固井材料研发。E-mail:zouyw2@cnooc.com.cn

  • 中图分类号: TE256

Preparation and Performance Evaluation of Well cementing Fluid Loss Additive by Dispersion Polymerization Method

  • 摘要: 针对水溶液聚合以及反相乳液聚合的弊端,首次报道了一种通过分散聚合制备固井降失水剂C-FL72L的方法。其中,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、富马酸(FA)、N,N-二甲基丙烯酰胺(DMA)为聚合单体,季戊四醇三烯丙基醚(APE)为交联剂,聚乙烯吡咯烷酮(PVP-K30)为稳定剂,固含量为33%。对分散聚合的反应动力学进行了考察,反应4 h转化率可达98.9%。通过红外光谱测试、热重分析、高效液相色谱分析、凝胶渗透色谱分析等表征手段,表明所有单体充分且完全聚合,降失水剂耐温超过300 ℃,分子量可达77.2万。对样品在水泥浆中的应用性能进行了评价,在210 ℃下,可将失水控制在50 mL以内,水泥浆流变性能、稠化性能、抗压强度等水泥浆综合工程性能良好。并对使用新合成方法制备的降失水剂的作用机理进行了探讨。降失水剂C-FL72L在高密度、低密度、树脂、胶乳、盐水等功能水泥浆体系中综合应用性能优异,有着广阔的应用前景。

     

  • 图  1  样品反应状态随时间变化关系

    图  2  (a)单体转化率随时间变化曲线(b)ln([M]0/[M])-时间曲线

    图  3  降失水剂C-FL72L的红外光谱

    图  4  降失水剂C-FL72L的热重曲线图

    图  5  水泥浆失水量与降失水剂加量的变化情况

    图  6  210 ℃高温水泥浆稠化曲线

    图  7  水泥浆滤饼扫描电镜图

    图  8  水泥浆API失水量和降失水剂C-FL72L吸附量与其加量的关系曲线

    表  1  降失水剂C-FL72L的分子量和分子量分布

    样品名 数均分子
    量/kDa
    重均分子
    量/kDa
    分子量
    分布
    t出峰/min
    C-FL72L 366.8 772 2.105 19.95~36.14
    下载: 导出CSV

    表  2  C-FL72L加量2.5%下的水泥浆在不同温度下的流变性和失水性能

    T/℃C-FL72L/%φ3/φ6/φ100/φ200/φ300/φ600FLAPI /mL
    302.58/14/130/212/28718
    502.56/9/95/157/21120
    702.55/8/83/132/17727
    902.56/10/69/118/14931
     注:游离液均为0;不同温度下水泥浆均不沉降。
    下载: 导出CSV

    表  3  高温下水泥浆失水量与降失水剂加量变化

    C-FL72L/%T/℃FLAPI/mLΔρ水泥石/(g·cm−3
    4.0100180.013
    110250.012
    5.0120190.012
    130290.014
    5.5140240.016
    150330.017
    6.0180360.018
    200470.018
    6.5210430.019
    下载: 导出CSV

    表  4  水泥浆在不同温度下的稠化时间

    T/℃ C-R21L/R42L/g t稠化/min t过渡/min
    60 1 154 12
    60 2 198 15
    60 3 247 13
    90 2 189 9
    90 3 240 9
    90 4 305 8
    120 9 192 6
    120 12 264 7
    120 15 312 6
    150 12 192 5
    150 15 268 5
    150 18 323 6
    180 18 216 5
    180 21 330 5
    210 21 203 3
    210 24 275 3
     注:90 ℃及以下温度使用缓凝剂C-R21L,温度超过90 ℃使用缓凝剂C-R42L。
    下载: 导出CSV

    表  5  不同温度下水泥石抗压强度

    水泥浆ρ/(g·cm−3)T/℃p/MPa
    1#1.94018.3
    1#1.95019.8
    1#1.97022.9
    1#1.99024.6
    2#1.910023.5
    2#1.911024.9
    2#1.912024.3
    3#1.913025.7
    3#1.914026.1
    3#1.915029.4
    4#1.918032.4
    4#1.921036.8
    下载: 导出CSV

    表  6  不同水泥浆综合性能评价

    水泥
    T/
    ρ/
    g·cm−3
    t下灰/
    s
    FLAPI/
    mL
    t稠化/
    min
    p24 h/
    MPa
    游离液/
    %
    5# 210 2.2 33 45 347 24 0
    6# 140 1.68 23 40 349 21 0
    7# 140 1.9 20 25 262 26 0
    8# 200 1.9 43 32 341 35 0
    9# 150 2.2 31 45 306 24 0
    下载: 导出CSV
  • [1] 罗宇维, 肖伟, 赵军. “十三五”中国海油固井技术研究进展与发展建议[J]. 中国海上油气,2020,32(5):145-151.

    LUO Yuwei, XIAO Wei, ZHAO Jun. Research progresses and development suggestions of CNOOC cementing technology during the "13th Five-Year Plan"[J]. China Offshore Oil and Gas, 2020, 32(5):145-151.
    [2] 罗宇维, 陈良, 罗东辉, 等. 深水高压井负压力窗口固井关键技术[J]. 中国海上油气,2016,28(4):83-87.

    LUO Yuwei, CHEN Liang, LUO Donghui, et al. Key technology for negative pressure-window cementing in high pressure deep water walls[J]. China Offshore Oil and Gas, 2016, 28(4):83-87.
    [3] 喻文娟, 郭锦棠, 郭春, 等. 耐盐降失水剂AMPS/DMAA/IA的合成及其性能评价[J]. 化学工艺与工程,2018,35(1):45-50.

    YU Wenjuan, GUO Jintang, GUO Chun, et al. Synthesis and performance evaluation of Salt-Resistant fluid loss additive AMPS/DMAA/IA[J]. Chemical industry and engineer, 2018, 35(1):45-50.
    [4] 韩亮, 唐欣, 杨远光, 等. 新型两性离子固井降失水剂的合成与性能评价[J]. 钻井液与完井液,2018,35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014

    HAN Liang, TANG Xin, YANG Yuanguang, et al. Synthesis and evaluation of a new amphoteric filter loss reducer for cement slurry[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):85-91. doi: 10.3969/j.issn.1001-5620.2018.02.014
    [5] MAO H, QIU Z S, SHEN Z H, et al. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature[J]. Journal of Petroleum Science and Engineering, 2015, 129:1-14. doi: 10.1016/j.petrol.2015.03.003
    [6] 张健, 彭志刚, 邹长军, 等. 聚合物基纳米SiO2复合微球固井降失水剂的合成及表征[J]. 硅酸盐学报,2017,45(11):1649-1657.

    ZHANG Jian, PENG Zhigang, ZOU Changjun, et al. Synthesis and characterization of composite polymer microspheres based Nano-Silica for cementing fluid loss additive[J]. Journal of the Chinese Ceramic Society, 2017, 45(11):1649-1657.
    [7] CAO L, GUO J T, TIAN J H, et al. Synthesis, characterization and working mechanism of a novel sustained-release-type fluid loss additive for seawater cement slurry[J]. Journal of Colloid and Interface Science, 2018, 524:434-444. doi: 10.1016/j.jcis.2018.03.079
    [8] 邹亦玮, 王义昕. 抗盐固井降失水剂的研究进展[J]. 辽宁化工,2022,51(3):410-413. doi: 10.3969/j.issn.1004-0935.2022.03.033

    ZOU Yiwei, WANG Yixin. Research progress of salt resistant cementing fluid loss additive[J]. Liaoning Chemical Industry, 2022, 51(3):410-413. doi: 10.3969/j.issn.1004-0935.2022.03.033
    [9] 林鑫,刘硕琼,夏修建,等. 热引发聚合方法制备抗240 ℃水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104. doi: 10.12358/j.issn.1001-5620.2024.01.011

    LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240 ℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104. doi: 10.12358/j.issn.1001-5620.2024.01.011
    [10] XU Y, YU Y J, LIU M, et al. Synthesis and working mechanism of fluid loss additive by freeze-drying method[J]. Polymer-plastics technology and materials, 2020, 59(13):1417-1428. doi: 10.1080/25740881.2020.1744010
    [11] LI M, XIAO W Y, ZHANG H, et al. An effective salt-tolerant fluid loss additive-suitable for high temperature oil well cement[J]. Journal of Dispersion Science and Technology, 2021, 42(5):730-741. doi: 10.1080/01932691.2019.1709494
    [12] 郭锦棠, 刘振兴, 何军, 等. 新型耐温抗盐降失水剂LX-1的研制与性能评价[J]. 天津大学学报(自然科学与工程技术版),2021,54(3):318-323.

    GUO Jintang, LIU Zhenxing, HE Jun, et al. Synthesis and properties of a new High-Temperature and Salt-Resistant fluid loss additive LX-1[J]. Journal of Tianjin University Science and Technology, 2021, 54(3):318-323.
    [13] 李晓岚, 郑志军, 郭鹏. 高温油井水泥降失水剂ZFA-1的合成及性能[J]. 钻井液与完井液,2020,37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013

    LI Xiaolan, ZHENG Zhijun, GUO Peng. Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):209-213,220. doi: 10.3969/j.issn.1001-5620.2020.02.013
    [14] 李子轩. P (AMPS-DMAA-MEP)三元共聚降失水剂的制备及其性能研究[J]. 塑料工业,2020,48(1):157-160. doi: 10.3969/j.issn.1005-5770.2020.01.034

    LI Zixuan. Preparation and properties of P(AMPS-DMAA-MEP) ternary copolymerization water loss reducing agent[J]. China Plastics Industry, 2020, 48(1):157-160. doi: 10.3969/j.issn.1005-5770.2020.01.034
    [15] 邹双, 熊钰丹, 张天意, 等. 盐膏层固井用降失水剂的研究与应用[J]. 钻井液与完井液,2021,38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017

    ZOU Shuang, XIONG Yudan, ZHANG Tianyi, et al. Study and application of fluid loss additive used in cement slurries for cementing salt-gypsum stratum[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):765-770. doi: 10.12358/j.issn.1001-5620.2021.06.017
    [16] 李雨威, 黄志宇. 抗高温油井水泥降失水剂SZ1-1的研制与应用[J]. 钻采工艺,2018,41(6):94-97. doi: 10.3969/J.ISSN.1006-768X.2018.06.27

    LI Yuwei, HUANG Zhiyu. Development and application of high temperature oil well cement filtrate reducer SZ1[J]. Drilling & Production Technology, 2018, 41(6):94-97. doi: 10.3969/J.ISSN.1006-768X.2018.06.27
    [17] 刘欢, 曾雪玲, 李文研, 等. 新型抗温耐盐聚合物降失水剂的制备及性能研究[J]. 现代化工,2023,43(1):226-233.

    LIU Huan, ZENG Xueling, LI Wenyan, et al. Preparation and properties of a novel temperature-and salt-resistant polymer fluid loss reducer[J]. Modern chemical industry, 2023, 43(1):226-233.
    [18] 郭子涵, 李明, 杨燕, 等. 近年来油井水泥降失水剂研究现状概述[J]. 现代化工,2015,35(10):49-53.

    GUO Zihan, LI Ming, YANG Yan, et al. Current status of fluid loss reducers for oil well cement in recent years[J]. Modern chemical industry, 2015, 35(10):49-53.
    [19] 胡昊, 高榕, 刘东兵. 分散聚合研究进展[J]. 石油化工,2021,50(11):1194-1201. doi: 10.3969/j.issn.1000-8144.2021.11.012

    HU Hao, GAO Rong, LIU Dongbing. Progress in dispersion polymerization[J]. Petrochemical Technology, 2021, 50(11):1194-1201. doi: 10.3969/j.issn.1000-8144.2021.11.012
    [20] WANG K, WANG Y X, ZHANG W Q. Synthesis of diblock copolymer nano-assemblies by Pisa under dispersion polymerization: comparison between ATRP and RAFT[J]. Polymer Chemistry, 2017, 8(41):6407-6415. doi: 10.1039/C7PY01618B
    [21] WANG Y X, HAN G, DUAN W F, et al. ICAR ATRP in PEG with Low Concentration of Cu(II) Catalyst: a Versatile Method for Synthesis of Block Copolymer Nanoassemblies under Dispersion Polymerization[J]. Macromolecular Rapid Communications, 2019, 40(2):e1800140. doi: 10.1002/marc.201800140
    [22] 于永金, 张航, 夏修建, 等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液,2022,39(3):352-358.

    YU Yongjin, ZHANG Hang, XIA Xiujian, et a1. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):352-358
    [23] 王其可,刘文明,凌勇,等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液,2023,40(5):629-636.

    WANG Qike, LIU Wenming, LING Yong, et al. The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):629-636
    [24] 夏修建,李鹏鹏,于永金,等. 侧链对油井水泥降失水剂性能的影响及机理研究[J]. 钻井液与完井液,2022,39(6):748-753.

    XIA Xiujian, LI Pengpeng, YU Yongjin, et al. Effects of polymer sidechains on performance of oil well cement filter loss reducers and studies on mechanisms of the effects[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):748-753
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  50
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-11
  • 修回日期:  2024-08-21
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回