A Full Temperature Range Polymer Retarder
-
摘要: 针对传统链状聚合物缓凝剂规律性差、中低温易超缓凝、强度发展缓慢的技术难题,根据缓凝剂作用机理、通过优化分子结构设计,在2-丙烯酰胺-2-甲基丙磺酸(AMPS)和衣康酸(IA)基础上引入苯乙烯磺酸钠(SSS)单体和长链疏水缔合单体TAS-24,制备出一种新型四元聚合物缓凝剂C-R45L,并通过红外光谱和水泥浆性能评价对其进行了研究。研究结果表明:缓凝剂C-R45L具有良好的缓凝效果,在加量为4%、温度为210 ℃的下稠化时间可达到347 min;在高温及中低温下都具有良好的规律性,不仅适用于高温条件,也可应用于中低温固井;对水泥石抗压强度无不利影响,中低温及顶部强度发展快,具有良好的大温差性能,适用于长封固段固井。缓凝剂C-R45L在古探1井成功应用,固井质量优良。Abstract: A new quaternary polymer retarder C-R45L has been developed through molecular design to overcome the shortcomings of the conventional chain polymer retarders such as poor regularity, easy to cause overtime retardation at medium-low temperatures and slow development of strength etc. The raw materials for the synthesis of C-R45L include 2-acrylamido-2-methylpropanesulfonic acid (AMPS), itaconic acid (IA), sodium styrene sulfonate (SSS) and a long-chain hydrophobic associative monomer TAS-24. Study on C-R45L with IR spectroscopy and laboratory evaluation of C-R45L’s effects on the performance of cement slurries show that C-R45L has good retarding effect; a cement slurry treated with 4% C-R45L has thickening time of 347 min at 210 ℃. At high and medium-low temperatures, C-R45L has good retarding regularity. C-R45L can be used at high-temperature, medium-temperature and low-temperature operations. It has no adverse effect on the compressive strength of set cement, the medium/low temperature strengths and the top strength of set cement develop very fast. Good wide-temperature-range performance makes C-R45L suitable for use in cementing long open holes. C-R45L has been successfully used in cementing the exploration well Gutan-1, and excellent cementing job quality was obtained.
-
表 1 缓凝剂C-R45L稠化性能评价
C-R45L/% T/℃ t稠化/min C-R45L/% T/℃ t稠化/min 0.8 30 373 2.8 160 371 1.5 60 380 4.0 210 347 1.5 100 327 表 2 不同缓凝剂对水泥浆抗压强度的影响
缓凝
剂加量/
%T/
℃t稠化/
minp/MPa 24 h 48 h 72 h C-R45L 0.80 30 373 5.8 18.3 1.50 30 596 2.6 16.8 1.50 60 380 15.8 22.4 1.50 90 352 18.3 25.9 1.50 120 314 25.2 28.5 2.75 90 0 8.6 18.2 2.75 150 320 28.3 31.2 C-R40L 3.00 90 0 0.4 14.2 3.00 150 325 27.8 32.0 表 3 水化产物分析
物相 不同C-R45L加量(%)水泥的水化产物/% 0 2 4 C3S 6.32 10.92 14.04 C2S 2.68 4.27 8.06 MgO 0 0.13 0.02 C3A 0 0.44 0.92 C4AF 3.36 7.27 7.69 CaSO4 0.32 0.42 0.77 Ca(OH)2 0.06 0 0.90 α-SiO2 11.58 14.87 17.68 CaCO3 1.70 0.70 0.63 α-C2SH 4.58 8.19 11.03 CSH 69.40 52.79 38.26 表 4 塔东古探1井Φ200 mm套管固井水泥浆性能
水泥浆 ρ/
g·cm−3流动度/
cmFLAPI /
mLt稠化/
minp顶部/MPa
72 h(36 ℃)p底部/MPa
24 h(145 ℃)领浆 1.40 20 36 420 3.8 尾浆 1.88 22 28 238 30.5 -
[1] 于永金, 薛毓铖, 夏修建, 等. 一种抗240 ℃超高温固井缓凝剂的研发与评价[J]. 天然气工业,2023,43(3):107-112.YU Yongjin, XUE Yucheng, XIA Xiujian, et al. Research & development and evaluation of a cementing retarder resistant to 240 ℃ ultra-high temperature[J]. Natural Gas Industry, 2023, 43(3):107-112. [2] 徐鸿志,宋伟宸,步玉环,等. 基于水合物层骨架重构的低温早强胶凝材料[J]. 钻井液与完井液,2024,41(3):357-363. doi: 10.12358/j.issn.1001-5620.2024.03.011XU Hongzhi, SONG Weichen, BU Yuhuan, et al. A low temperature early strength gel material based on reconstruction of hydrate layer frame[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):357-363. doi: 10.12358/j.issn.1001-5620.2024.03.011 [3] 林鑫,刘硕琼,夏修建,等. 环氧磷酸缓凝剂研发及抗220 ℃常规密度水泥浆综合性能[J]. 钻井液与完井液,2024,41(2):215-219. doi: 10.12358/j.issn.1001-5620.2024.02.011LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Development of an epoxy phosphate retarder and a high temperature cement slurry resistant to 220 °C[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):215-219. doi: 10.12358/j.issn.1001-5620.2024.02.011 [4] 彭志刚, 许遵见, 冯茜, 等. 新型高温缓凝剂WHJ在深井固井中的应用[J]. 天然气工业,2009,29(12):41-44.PENG Zhigang, XU Zunjian, FENG Qian, et al. Application of a new high-temperature retarder WHJ in deep well cementing[J]. Natural Gas Industry, 2009, 29(12):41-44. [5] 郭锦棠, 夏修建, 刘硕琼, 等. 适用于长封固段固井的新型高温缓凝剂HTR-300L[J]. 石油勘探与开发,2013,40(5):611-615. doi: 10.11698/PED.2013.05.16GUO Jintang, XIA Xiujian, LIU Shuoqiong, et al. A high temperature retarder HTR-300L used in long cementing interval[J]. Petroleum Exploration and Development, 2013, 40(5):611-615. doi: 10.11698/PED.2013.05.16 [6] 严思明, 吴亚楠, 杨圣月, 等. 高温缓凝剂AMCT的合成及其性能评价[J]. 精细化工,2017,34(5):562-568.YAN Siming, WU Yanan, YANG Shengyue, et al. Synthesis and evaluation of high temperature retarder AMCT[J]. Fine Chemicals, 2017, 34(5):562-568. [7] 刘建,张泽宇,魏浩光,等. 新型油井水泥缓凝剂的研制[J]. 钻井液与完井液,2022,39(5):615-621.LIU Jian, ZHANG Zeyu, WEI Haoguang, et al. Development of new oil well cement retarder[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):615-621. [8] 凌勇, 于倩倩, 马如然, 等. 固井用高温缓凝剂的研究与应用[J]. 钻井液与完井液,2023,40(2):209-215. doi: 10.12358/j.issn.1001-5620.2023.02.009LING Yong, YU Qianqian, MA Ruran, et al. Study and application of a high temperature retarding agent for well cementing[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):209-215. doi: 10.12358/j.issn.1001-5620.2023.02.009 [9] 余鑫, 于诚, 冉千平, 等. 羟基羧酸类缓凝剂对水泥水化的缓凝机理[J]. 硅酸盐学报,2018,46(2):181-186.YU Xin, YU Cheng, RAN Qianping, et al. Retarding mechanism of hydroxy carboxylic acid retarder on cement hydration[J]. Journal of the Chinese Ceramic Society, 2018, 46(2):181-186. [10] 陈新. 热增黏聚合物合成及对水泥浆沉降稳定性的影响研究[D]. 东营: 中国石油大学(华东), 2018.CHEN Xin. Synthesis of Thermoviscosifying Polymer and Its Effect on Stability of Cement Slurry[D]. Dongying: China University of Petroleum(East China), 2018. [11] 谭芳. 疏水缔合聚合物磺酸盐的合成及性能评价[D]. 成都: 西南石油大学, 2003.TAN Fang. Synthesis and performance evaluation of hydrophobic associative polymer sulfonate[D]. Chengdu: SouthWest Petroleum University, 2003. [12] 王桓. 耐高温油井水泥浆沉降稳定剂的合成与性能研究[D]. 东营: 中国石油大学(华东), 2020.WANG Huan. Study on synthesis and performance of heat-resistant settling stabilizer for oil well cement[D]. Dongying: China University of Petroleum(East China), 2020. [13] 武治强,武广瑷,幸雪松. CO2 腐蚀-应力耦合下固井水泥环密封完整性[J]. 钻井液与完井液,2024,41(2):220-230.WU Zhiqiang, WU Guang’ai,XING Xuesong. Sealing integrity of cement sheath under the condition of CO2 corrosion–stress coupling[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):220-230. [14] 林鑫,刘硕琼,夏修建,等. 热引发聚合方法制备抗240 ℃水泥浆降失水剂[J]. 钻井液与完井液,2024,41(1):98-104.LIN Xin, LIU Shuoqiong, XIA Xiujian, et al. Preparation of a 240 ℃ cement slurry filter loss reducer prepared through thermal initiation polymerization[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):98-104 [15] 于永金,夏修建,王治国,等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33.YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and ultra-deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2):24-33 [16] 李小林, 李剑华, 杨红滨, 等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81.LI Xiaolin, LI Jianhua, YANG Hongbin, et a1. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81. [17] 王明辉,李进,韩耀图,等. 基于超声Lamb波的固井质量评价新技术与应用[J]. 钻井液与完井液,2023,40(4):519-526.WANG Minghui, LI Jin, HAN Yaotu, et al. A new technology for evaluating job quality of well cementing based on ultrasonic lamb wave and its application[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):519-526. [18] 郝海洋,刘俊君,何吉标,等. 页岩气超长水平井预控水泥环封固失效水泥浆技术[J]. 天然气勘探与开发,2022,45(3):108-115.HAO Haiyang, LIU Junjun, HE Jibiao, et al. Cement slurry technology for preventing and controlling cement sheath integrity failure in ultra-long horizontal shale gas wells[J]. Natural Gas Exploration and Development, 2022, 45(3):108-115. -