The Physical-Chemical Properties of the Formations in Bayan Hetao Block and Drilling Fluid Optimization Strategies
-
摘要: 巴彦油田地层条件复杂,存在漏失、垮塌、卡钻等井下问题,影响了钻进效率。通过X射线、电镜和粒度分析等方法研究易失稳地层岩样的岩性、微观形貌和粒度分布。确定井壁失稳主要原因为钻井液对地层中微纳米裂缝的封堵能力不足导致滤液侵入使得临河组盐岩及石膏溶解剥落。因此针对上述情况,引入适用于巴彦油田失稳层位微裂缝的自研微纳米刚性封堵材料矿物树脂微粉XNZD系列及高分子柔性改性石蜡XNEP,以此来提高现场钻井液的封堵性能;引入自研胺基类复合物抑制剂XNYZ配合甲酸钾或有机盐提高钻井液抑制性能。研究表明,优化后的钻井液在缝宽为0.03 mm下的封堵滤失量降低了98%,线性膨胀率降低了82.9%,提高了现场钻井液体系的封堵性及抑制性,为巴彦河套临河区块复杂地层高效钻进提供了重要的技术支撑。Abstract: The formations in the Bayan block are complex in nature, mud losses, borehole wall collapse and pipe sticking etc. have long been problems hindering the drilling efficiency. Using laboratory methods such as X-Ray, electron microscopy and particle size analysis etc., the lithology, micromorphology and particle size distribution of the rock samples taken from the unstable section of the formations were studied. The primary cause of wellbore instability is identified as the inadequate sealing capability of the drilling fluid concerning the micro-nano fractures within the formation, which leads to fluid invasion and results in the dissolution and detachment of salt and gypsum from the Linhe Formation. To deal with these problems, a powdered rigid micrometer and nanometer resin plugging agent XNZD and a flexible high molecular weight modified paraffin XNEP were introduced into the drilling fluid to improve its plugging capacity. The self-developed XNZD plugging agent has a particle size distribution that is compatible with the fractures’ sizes of the unstable formations encountered in the Bayan block. Also introduced into the drilling fluid was a self-developed amine-based compound shale inhibitor XNYZ which was used in combination with potassium formate or other organic salts to improve the inhibitive capacity of the drilling fluid. In laboratory experiment with the optimized drilling fluid on a mud loss tester with fracture size of 0.03 mm, the amount of the drilling fluid lost was reduced by 98% because of the good plugging capacity of the drilling fluid. In core expansion test, the percent linear expansion of shale cores tested with the drilling fluid was reduced by 89.2%. These experimental results indicate that the drilling fluid has good plugging capacity and inhibitive capacity, and has provided an important technical support for the high efficiency drilling in the complex formations in the Bayan Hetao block.
-
Key words:
- Mud loss /
- Microfracture /
- Borehole wall destabilization /
- Micro-nano sealing /
- Drilling fluid
-
表 1 LHX井不同层位的矿物组成
层位 井深/
m矿物百分含量/% 黏土矿物相对含量/% 黏土
总量重晶石 石英 钾长石 斜长石 方解石 白云石 菱铁矿 硬石膏 石盐 黄铁矿 伊利石 蒙脱石 伊/蒙 高岭石 绿泥石 间层比 五原组 4735 18.5 0 45.9 3.2 14.0 13.3 5.0 0 0 0 0 57.5 0 9.9 9.0 23.6 10.0 临一段 6731 14.1 8.1 17.2 0 14.6 8.2 29.9 0 0 2.2 5.7 68.7 0 2.0 15.6 13.7 10.0 临二段 6832 5.2 4.3 5.9 10.5 4.7 1.4 1.0 0 2.1 64.8 0.0 69.8 0 3.6 9.4 17.1 10.0 平均值 12.6 4.13 23.0 4.57 11.1 7.63 11.97 0 0.7 22.33 1.9 65.33 0 5.17 11.33 18.13 10.0 表 2 LHX井易漏层位岩样矿物X-射线衍射分析
(%) 石英 钾长石 斜长石 白云石 石盐 硬石膏 黏土矿物 5.2 2.6 5.1 11.4 59.7 11.6 4.4 表 3 LHX井复合盐钻井液加入微纳米封堵材料前后的封堵效果
封堵材料 不同缝宽裂缝下的滤失量/mL 0.02 mm 0.15 mm 0.3 mm 0 6 18 46 6%XNZD(400~5000目)+0.75%XNEP 0.7 0.6 0.9 注:实验条件为150 ℃、4 mPa。 表 4 在LHX井复合盐钻井液中加入微纳米封堵材料前后的砂床实验结果
封堵材料 不同时间下的侵入深度/cm 0 min 5 min 10 min 15 min 30 min 60 min 0 0 5 9 13 28 52 6%XNZD(400~5000目)+0.75%XNEP 0 1.5 2.1 4.4 7.6 8.2 表 5 LHX井各层位岩样的滚动回收率
层位 井深/m 初始质量/g 回收质量/g 岩样回收率/% 五原组 4820 50.00 35.04 70.08 5994 50.00 36.53 73.06 临一段 6348 50.00 35.86 71.72 6357 50.00 32.03 64.06 临二段 6835 50.00 28.05 56.10 注:热滚条件为150 ℃、16 h。 表 6 在LHX井复合盐钻井液中 加入不同盐的抗污染性能
加入盐 粗盐回收率% 无 46.46 30%氯化钠 74.42 100%甲酸钾 60.48 60%有机盐 65.20 -
[1] 沈华, 刘震, 史原鹏, 等. 河套盆地临河坳陷油气成藏过程解剖及勘探潜力分析[J]. 现代地质,2021,35(3):871-882.SHEN Hua, LIU Zhen, SHI Yuanpeng, et al. Hydrocarbon accumulation process and exploration potential in linhe depression, hetao basin[J]. Geoscience, 2021, 35(3):871-882. [2] 赵欣, 邱正松, 张永君, 等. 复合盐层井壁失稳机理及防塌钻井液技术[J]. 中南大学学报(自然科学版),2016,47(11):3832-3838.ZHAO Xin, QIU Zhengsong, ZHANG Yongjun, et al. Wellbore instability mechanism and wellbore stabilizing drillingfluid technique for drilling compound salt formation[J]. Journal of Central South University (Science and Technology), 2016, 47(11):3832-3838. [3] 杜宣. 西江区块古近系地层井壁失稳机理及对策研究[D]. 北京: 中国石油大学(北京), 2018.DU Xuan. Research of the wellbore instability mechanism and countermeasure in the palaeocolinal strata of XiJiang block[D]. Beijing: China University of Petroleum (Beijing), 2018. [4] 侯杰, 李浩东, 于兴东, 等. 松辽盆地陆相致密油井壁失稳机理及钻井液对策[J]. 钻井液与完井液,2021,38(5):598-604. doi: 10.12358/j.issn.1001-5620.2021.05.009HOU Jie, LI Haodong, YU Xingdong, et al. Mechanisms of borehole wall instability of terrestrial tight oil wells in songliao basin and drilling fluid countermeasures[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):598-604. doi: 10.12358/j.issn.1001-5620.2021.05.009 [5] 王波, 孙金声, 申峰, 等. 陆相页岩气水平井段井壁失稳机理及水基钻井液对策[J]. 天然气工业,2020,40(4):104-111. doi: 10.3787/j.issn.1000-0976.2020.04.013WANG Bo, SUN Jinsheng, SHEN Feng, et al. Mechanism of wellbore instability in continental shale gas horizontal sections andits water-based drilling fluid countermeasures[J]. Natural Gas Industry, 2020, 40(4):104-111. doi: 10.3787/j.issn.1000-0976.2020.04.013 [6] 高德利, 刘维, 万绪新, 等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20-34. doi: 10.11911/syztjs.2023022GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques, 2023, 51(4):20-34. doi: 10.11911/syztjs.2023022 [7] 赵欣, 孙昊, 邱正松, 等. 复合盐层多元协同稳定井壁钻井液技术[J]. 深圳大学学报(理工版),2022,39(6):668-674 doi: 10.3724/SP.J.1249.2022.06668ZHAO Xin, SUN Hao, QIU Zhengsong, et al. Drilling fluid for stabilizing the wellbore in compound-salt formation based on multiple-synergism-method[J]. Journal of Shenzhen University (Science and Engineering), 2022, 39(6):668-674. doi: 10.3724/SP.J.1249.2022.06668 [8] 闫睿昶, 张宇, 吴红玲, 等. 巴彦河套盆地临河区块深层井壁失稳钻井液对策[J]. 石油钻采工艺,2022,44(2):168-172,185YAN Ruichang, ZHANG Yu, WU Hongling, et al. Drilling fluid solutions to well instability in deep layers of Linhe block of the Bayan Hetao Basin[J]. Oil Drilling & Production Technology, 2022, 44(2):168-172,185. [9] 李成, 白杨, 于洋, 等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22. [10] 赵峰, 唐洪明, 孟英峰, 等. 微观地质特征对硬脆性泥页岩井壁稳定性影响与对策研究[J]. 钻采工艺,2007,30(6):16-18. doi: 10.3969/j.issn.1006-768X.2007.06.007ZHAO Feng, TANG Hongming, MENG Yingfeng, et al. Study on the influence of microscopic geologic characteristics on wellbore stability of brittle shale[J]. Drilling & Production Technology, 2007, 30(6):16-18. doi: 10.3969/j.issn.1006-768X.2007.06.007 [11] 卢运虎, 陈勉, 袁建波, 等. 各向异性地层中斜井井壁失稳机理[J]. 石油学报,2013,34(3):563-568. doi: 10.7623/syxb201303022LU Yunhu, CHEN Mian, YUAN Jianbo, et al. Borehole instability mechanism of a deviated well in anisotropic formations[J]. Acta Petrolei Sinica, 2013, 34(3):563-568. doi: 10.7623/syxb201303022 [12] 宋洵成, 王鹏, 张宇, 等. 安探4X井低固相超高温钻井液技术[J]. 钻井液与完井液,2018,35(2):40-43. doi: 10.3969/j.issn.1001-5620.2018.02.006SONG Xuncheng, WANG Peng, ZHANG Yu, et al. Low solids ultra-high temperature drilling fluid technology for well antan-4X[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):40-43. doi: 10.3969/j.issn.1001-5620.2018.02.006 [13] 赵海峰, 陈勉. 基于实钻资料的井壁稳定实时预测理论[J]. 石油学报,2011,32(2):324-328.ZHAO Haifeng, CHEN Mian. Real-time prediction of borehole instability based on actual drilling data[J]. Acta Petrolei Sinica, 2011, 32(2):324-328. [14] 金衍, 陈勉, 张旭东. 钻前井壁稳定预测方法的研究[J]. 石油学报,2001,22(3):96-99. doi: 10.7623/syxb200103020JIN Yan, CHEN Mian, ZHANG Xudong. Study on prediction for borehole stability before drilling[J]. Acta Petrolei Sinica, 2001, 22(3):96-99. doi: 10.7623/syxb200103020 [15] 黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报,2006,27(6):65-69.HUANG Jixin, PENG Shimi, WANG Xiaojun, et al. Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6):65-69. [16] 邱正松, 张世锋, 黄维安, 等. “多级孔隙最优充填”暂堵方法与现场试验[J]. 石油钻探技术,2012,40(5):17-21.QIU Zhengsong, ZHANG Shifeng, HUANG Weian, et al. Temporary plugging and field testing with"optimum filling for multi-stage pores"method[J]. Petroleum Drilling Techniques, 2012, 40(5):17-21. [17] 唐继平. 盐膏层钻井理论与实践[M]. 北京: 石油工业出版社, 2004.TANG Jiping. Theory and practice of drilling in salt gypsum formations[M]. Beijing: Petroleum industry press, 2004. [18] 葛伟凤, 陈勉, 金衍, 等. 深部盐膏岩地层套管磨损后等效应力分析[J]. 中国石油大学学报(自然科学版),2013,37(1):75-79.GE Weifeng, CHEN Mian, JIN Yan, et al. Analysis of equivalent stress on casings after casing wear in deep salt-gypsum formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(1):75-79. [19] 程智, 罗玉财, 刘荣庆, 等. 巴彦油田疏松砂岩储层保护技术[J]. 钻井液与完井液,2023,40(5):594-601.CHENG Zhi, LUO Yucai, LIU Rongqing, et al. Study on technology for protecting loose sandstone reservoir in Bayan oilfield[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):594-601. [20] 王信, 谭春, 王志彬, 等. 河探1井超高密度钻井液技术[J]. 钻井液与完井液,2023,40(2):193-201. doi: 10.12358/j.issn.1001-5620.2023.02.007WANG Xin, TAN Chun, WANG Zhibin, et al. Ultra-High density drilling fluid technology for the well Hetan-1[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):193-201. doi: 10.12358/j.issn.1001-5620.2023.02.007 -