A Micro-CT Based Study of Evolution of Fracture Expansion in Fuxing Continental Facies Shales Soaked in Drilling Fluid
-
摘要: 通过微米CT扫描技术对复兴陆相页岩高温浸泡前后裂缝表征及演化进行量化分析,开展了膨润土浆、Nanodrill水基钻井液和白油基钻井液浸泡不同时间的CT扫描实验,并分析了不同钻井液对裂缝演化的影响。研究发现,凉高山组岩样中裂缝更为发育,不同钻井液对裂缝扩展的抑制效果有明显差异,随着浸泡时间的增加,膨润土浆浸泡10 d后岩样中最大层位裂隙占比为12.9%,明显高于白油基钻井液的6.13%,而水基介于两者之间。结合微观电镜实验研究了岩样浸泡前的裂缝开度分布,并对比得到浸泡10 d后的裂缝开度增长率,膨润土浆最大为61.6%,Nanodrill水基钻井液其次为52.1%,白油基钻井液最低为39.8%。进一步对裂缝长度分布进行量化统计得出,膨润土浆浸泡后,岩样中长度在50~100 μm的大尺度微裂缝数量明显增多,而Nanodrill水基钻井液与白油基钻井液浸泡后岩样中大尺度裂缝数量基本不变。白油基钻井液对页岩裂缝扩展的抑制效果最好,Nanodrill水基钻井液次之,膨润土浆效果最差。研究成果对复兴区块陆相页岩地层高效安全钻井作业提供参考。Abstract: Using micro-CT scanning technology, the characterization and evolution of the fractures in the Fuxing continental shales before and after high-temperature soaking are quantitatively analyzed. The continental shales are soaked in bentonite slurry, Nanodrill water based drilling fluid and white oil based drilling fluid, and are scanned with micro-CT at different soaking times. The effects of the different drilling fluids on the evolution of the fractures are analyzed. The study results show that the rock samples taken from the Liangshan Formation have more fractures than other rock samples, and different drilling fluids have different inhibitive capacities for the extension of the fractures. After soaking for 10 d in bentonite slurry, the percent layered fractures with the maximum width found in the rock samples is 12%, significantly higher than that of the rock samples in the white oil based drilling fluid, which is 6.13%, and the percent layered fractures with the maximum width of the rock samples in the water based drilling fluid lies in between the two. Using microscope, the distribution of the fracture widths of the rock samples before soaking is studied, and the percent increase of the fracture widths of the rock samples after soaking for 10 d is analyzed; the rock samples in the bentonite slurry have the highest percent increase in fracture width, which is 61.6%, the rock samples in the Nanodrill water based drilling fluid have the intermediate percent increase in fracture width, which is 52.1%, and the rock samples in the white oil based drilling fluid have the lowest percent increase in fracture width, which is 39.8%. Quantitative study on the distribution of the lengths of the fractures shows that the rock samples soaked in the bentonite slurry have the most fractures with lengths between 50 μm and 100 μm, and the numbers of the fractures with the same length distribution in the rock samples soaked in the Nanodrill water based drilling fluid and in the white oil based drilling fluid are basically remained unchanged. These data indicate that the white oil based drilling fluid has the best inhibitive capacity in inhibiting fracture extension in shales, with the Nanodrill water based drilling fluid inferior in inhibiting fracture extension to the oil based drilling fluid, and the bentonite slurry performs the poorest in this aspect. The results of this study can be used as a technical reference for efficient and safe drilling of the continental shale formations in the Fuxing area.
-
Key words:
- Shale /
- Micro-CT /
- Drilling fluid immersion /
- Microfracture characterization /
- Wellbore stability
-
表 1 不同钻井液浸泡下的裂缝平均开度变化
岩样 浸泡不同天数裂缝
平均开度/μm浸泡10 d后裂缝平均
开度增长率/%0 d 1 d 5 d 10 d Ⅰ号 5.446 5.729 6.185 8.856 62.6 Ⅱ号 3.857 3.908 5.561 5.867 52.1 Ⅲ号 6.205 7.536 8.084 8.678 39.8 -
[1] 梁超, 姜在兴, 杨镱婷, 等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698.LIANG Chao, JIANG Zaixing, YANG Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6):691-698. [2] 苟启洋, 徐尚, 郝芳. 纳米 CT 页岩孔隙结构表征方法--以 JY-1 井为例[J]. 石油学报, 2018, 39(11): 1253-1261.GOU Qiyang, XU Shang, HAO Fang. Characterization method of shale pore structure based on nano-CT: a case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39(11): 1253-1261. [3] 代锋, 易刚, 张婧, 等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733-741.DAI Feng, YI Gang, ZHANG Jing, et al. Study on methods of evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):733-741. [4] LIU Q, SUN M D, SUN X D, et al. Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: a review[J]. Gas Science and Engineering, 2023, 113:204967. doi: 10.1016/j.jgsce.2023.204967 [5] CRANDALL D, MOORE J, GILL M, et al. CT scanning and flow measurements of shale fractures after multiple shearing events[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100:177-187. doi: 10.1016/j.ijrmms.2017.10.016 [6] 赵静, 冯增朝, 杨栋, 等. 基于三维CT图像的油页岩热解及内部结构变化特征分析[J]. 岩石力学与工程学报,2014,33(1):112-117.ZHAO Jing, FENG Zengchao, YANG Dong, et al. Study of pyrolysis and internal structural variation of oil shale based on 3D CT images[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1):112-117. [7] ARIF M, MAHMOUD M, ZHANG Y H, et al. X-ray tomography imaging of shale microstructures: a review in the context of multiscale correlative imaging[J]. International Journal of Coal Geology, 2021, 233:103641. doi: 10.1016/j.coal.2020.103641 [8] YUSHI Z, SHICHENG Z, TONG Z, et al. Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J]. Rock Mechanics and Rock Engineering, 2016, 49(1):33-45. doi: 10.1007/s00603-015-0720-3 [9] 石秉忠, 夏柏如, 林永学, 等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137-142. doi: 10.1038/aps.2011.157SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of fracture development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1):137-142. doi: 10.1038/aps.2011.157 [10] MA T S, YANG C H, CHEN P, et al. On the damage constitutive model for hydrated shale using CT scanning technology[J]. Journal of Natural Gas Science and Engineering, 2016, 28:204-214. doi: 10.1016/j.jngse.2015.11.025 [11] 贾利春, 张超平, 周井红. 结合CT技术的页岩水化损伤规律研究[J]. 断块油气田,2017,24(2):214-217.JIA Lichun, ZHANG Chaoping, ZHOU Jinghong. Hydration damage characteristics of shale by using CT scanning technology[J]. Fault-Block Oil and Gas Field, 2017, 24(2):214-217. [12] 刘俊新, 杨春和, 冒海军, 等. 基于CT图像处理的泥页岩裂纹扩展与演化研究[J]. 浙江工业大学学报,2015,43(1):66-72.LIU Junxin, YANG Chunhe, MAO Haijun, et al. Study on crack spreading and evolvement of clay shale based on CT image processing[J]. Journal of Zhejiang University of Technology, 2015, 43(1):66-72. [13] 马天寿, 陈平. 基于CT扫描技术研究页岩水化细观损伤特性[J]. 石油勘探与开发,2014,41(2):227-233.MA Tianshou, CHEN Ping. Study of meso-damage characteristics of shale hydration based on CT scanning technology[J]. Petroleum Exploration and Development, 2014, 41(2):227-233. [14] 时贤, 程远方, 蒋恕, 等. 页岩微观结构及岩石力学特征实验研究[J]. 岩石力学与工程学报,2014,33(z2):3439-3445.SHI Xian, CHENG Yuanfang, JIANG Shu, et al. Experimental study of microstructure and rock properties of shale samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(z2):3439-3445. [15] 张士诚, 郭天魁, 周彤, 等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报,2014,35(3):496-503,518.ZHANG Shicheng, GUO Tiankui, ZHOU Tong, et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3):496-503,518. [16] 王羽, 汪丽华, 王建强, 等. 利用纳米透射X射线显微成像技术研究页岩有机孔三维结构特征[J]. 岩矿测试,2017,36(6):563-573.WANG Yu, WANG Lihua, WANG Jianqiang, et al. Investigation of organic matter pore structures of shale in three dimensions of shale using Nano-X-ray microscopy[J]. Rock and Mineral Analysis, 2017, 36(6):563-573. [17] 聂海宽, 马鑫, 余川, 等. 川东下侏罗统自流井组页岩储层特征及勘探潜力评价[J]. 石油与天然气地质,2017,38(3):438-447.NIE Haikuan, MA Xin, YU Chuan, et al. Shale gas reservoir characteristics and its exploration potential-analysis on the lower jurassic shale in the eastern Sichuan Basin[J]. Oil & Gas Geology, 2017, 38(3):438-447. [18] 周姗姗, 钟成兵, 刘杰, 等. 超低摩阻水基钻井液在页岩气水平井的应用[J]. 钻井液与完井液,2022,39(3):313-318.ZHOU Shanshan, ZHONG Chengbing, LIU Jie, et al. Application of ultra-low friction water-based drilling fuid in shale gas horizontal wells[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):313-318. [19] 何淼, 施皓瀚, 许明标. 水基钻井液高温高压流变动力学研究[J]. 钻井液与完井液,2021,38(3):271-279.HE Miao, SHI Haohan, XU Mingbiao. Study of rheological dynamics of water-based drilling fluids at high temperature and high pressure[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):271-279. [20] 艾磊, 高云文, 欧阳勇, 等. 适用于页岩油钻井的低伤害防塌水基钻井液体系[J]. 钻井液与完井液,2023,40(5):602-610.AI Lei, GAO Yunwen, OUYANG Yong, et al. Low damage highly inhibitive water based drilling fluid for drilling shale oil reservoir[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):602-610. [21] LI Z, LI G, LI H T, et al. Shale damage simulation considering shale swelling during shale-liquid interaction[J]. Fuel, 2023, 339:127423. doi: 10.1016/j.fuel.2023.127423 [22] 王鹏威, 张亚雄, 刘忠宝, 等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学,2021,32(11):1724-1734.WANG Pengwei, ZHANG Yaxiong, LIU Zhongbao, et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling area in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(11):1724-1734. [23] 许林, 王浪, 许明标, 等. 一种水基钻井液超支化高分子润滑添加剂[J]. 天然气工业,2023,43(7):79-89.XU Lin, WANG Lang, XU Mingbiao, et al. Hyperbranched polymer lubricant additive for water-based drilling fluid[J]. Natural Gas Industry, 2023, 43(7):79-89. [24] 何丹丹,赖璐,梅平,等. 两亲性碳点在硅酸盐钻井液中的润滑性能[J]. 钻井液与完井液,2024,41(4):451-457.HE Dandan, LAI Lu, MEI Ping, et al. The lubricity of amphiphilic carbon dots in silicate drilling fluids[J]. Drilling Fluid & Completion Fluid, 2024, 41(4):451-457. -