Development of Self-adaptive Plugging Material for Drilling Fluid
-
摘要: 针对堵漏过程中易漏地层特征掌握不准确,现场堵漏材料自适应能力差,易造成堵漏效果不佳和堵漏后发生重复性漏失的情况。通过可变形材料的优选,同时利用现有刚性堵漏材料的特点,研制出一种具有较好抗压能力和弹性的自适应堵漏材料,抗温达170 ℃,69 MPa压力下可变形不破碎,压力去除后回弹率达80%,与钻井液配伍性好,形成的自适应堵漏配方能够对1~6 mm的变化缝宽形成有效封堵,漏失少,承压能力达6 MPa。Abstract: In view of the fact that the characteristics of the easy-to-leak formation are not accurately grasped during the plugging process, the self-adaptive ability of the field plugging material is poor, and it is easy to cause the bad plugging effect and the repeated leakage after plugging. Through the optimization of the deformable material and the use of the characteristics of the rigid plugging material, a screw extruder is used to coat the deformable material on the surface of the rigid plugging material to achieve the effective combination of the two, an adaptive plugging material with good compression resistance and elasticity has been developed. The temperature resistance reaches 170 ℃, it can deform without breaking under 69 MPa pressure and the springback rate reaches 80% after the pressure is removed. The self-adaptive plugging formula can effectively plug the changing seam width of 1mm-6mm with less leakage and pressure bearing capacity of 6 MPa.
-
Key words:
- Plugging material /
- Self-adapting /
- Drilling fluid /
- Bearing capacity
-
表 1 可变形材料的性能评价
序号 SS∶LE 可变形温度范围/ ℃ 材料特征 1 30∶70 90~120 可变形,弹性差 2 50∶50 70~120 可变形,弹性差 3 70∶30 室温~170 可变形,弹性好 表 2 堵漏材料抗压变形实验
堵漏材料名称 最大抗压强度/MPa 回弹率/% 变形特征描述 刚性堵漏材料 0.2 0 无变形 自适应堵漏材料TZSY 69.0 80 可变形,弹性好 表 3 自适应堵漏材料对钻井液的性能影响实验
泥浆体系 pH值 Gel/(Pa/Pa) AV/mPa·s PV/mPa·s YP/Pa 现场钻井液 8 13.0/29.0 67.5 47 20.5 现场钻井液+20%TZSY(过滤后) 8 13.0/29.0 68.0 48 20.0 基浆 10 5.5/7.5 31.0 16 15.0 基浆+20% TZSY(过滤后) 10 5.5/7.5 30.0 15 15.0 注:基浆配方:5%膨润土+0.3%XC+4%(膨润土量)Na2CO3。 表 4 不同裂缝宽度下封堵材料圆球度
模拟裂缝宽度/mm 圆球度 实验后形态恢复圆球度 1 0.23 0.87 2 0.48 0.91 3 0.64 0.93 4 0.82 0.95 5 0.97 0.99 表 5 自适应堵漏配方在不同缝板宽度下的堵漏效果
缝板宽度/
mmP实验/
MPat堵漏/
s堵漏过程
漏失量/mLt稳压/
min累计
漏失量/mL1 0 0 0 10 0 1 0 0 10 0 3 0 0 10 0 5 0 0 10 0 6 0 0 10 0 2 1 0 0 10 0 3 10 20 10 20 5 0 0 10 20 6 0 0 10 20 3 1 0 0 10 40 3 20 10 10 50 5 20 20 10 70 6 30 30 10 100 4 1 0 0 10 120 3 20 20 5 140 5 30 40 5 180 6 40 40 5 220 6 1 0 0 10 250 3 30 50 5 300 5 30 40 5 340 6 60 60 10 400 注:稳压过程中的漏失量均为0;能堵住,承压能力为6 MPa。 表 6 常规堵漏配方堵漏效果评价表
配方 缝板
宽度/mmP实验/
MPat封堵/
s封堵
漏失量/ mLt稳压/
min稳压
漏失量/mL累计
漏失量/mL实验
描述常规堵漏配方 3 1 120 100 10 0 170 承压能力
6 MPa3 10 50 10 10 230 5 0 0 10 0 230 6 0 0 10 0 230 1 MPa下调缝至3.5 mm,调缝过程全部漏失。 注:常规堵漏配方:现场钻井液+11%(5~7)目核桃壳+3%10目石灰石+4%30目石灰石+4.5%(60~80)目石灰石+2%100目石灰石;承压能力为6 MPa。 -
[1] 郑力会, 张明伟. 封堵技术基础理论回顾与展望[J]. 石油钻采工艺,2012,34(5):1-9. doi: 10.3969/j.issn.1000-7393.2012.05.001ZHENG Lihui, ZHANG Mingwei. Review of basic theory for lost circulation control[J]. Oil Drilling & Production Technology, 2012, 34(5):1-9. doi: 10.3969/j.issn.1000-7393.2012.05.001 [2] 付赫然. 浅析如何提高惰性材料堵漏成功率[J]. 煤炭技术,2005,24(1):87-88. doi: 10.3969/j.issn.1008-8725.2005.01.046FU Heran. How to increase the leaking stoppage successful rate with inert material[J]. Coal Technology, 2005, 24(1):87-88. doi: 10.3969/j.issn.1008-8725.2005.01.046 [3] 陶青林. 钻孔裂隙发育特征及粘液自适应封堵关键技术研究[D]. 徐州: 中国矿业大学, 2019.TAO Qinglin. Drilling fissure development characteristics and research on key technology of mucus adaptive plugging[D]. Xuzhou: China University of Mining and Technology, 2019. [4] 臧晓宇, 邱正松, 暴丹, 等. 新型延迟膨胀堵漏剂特性实验研究[J]. 钻井液与完井液,2020,37(5):602-607.ZANG Xiaoyu, QIU Zhengsong, BAO Dan, et al. Laboratory study on the properties of a new delayed expansion lost circulation material[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):602-607. [5] 狄丽丽, 张智, 段明, 等. 超强吸水树脂堵漏性能研究[J]. 石油钻探技术,2007,35(3):33-36. doi: 10.3969/j.issn.1001-0890.2007.03.010DI Lili, ZHANG Zhi, DUAN Ming, et al. Research of plugging ability of super-absorbent resin[J]. Petroleum Drilling Techniques, 2007, 35(3):33-36. doi: 10.3969/j.issn.1001-0890.2007.03.010 [6] 高元. 长裸眼恶性漏失井双重防漏固井技术[J]. 钻井液与完井液,2024,41(3):390-395. doi: 10.12358/j.issn.1001-5620.2024.03.015GAO Yuan. Dual prevention of severe losses of cement slurries in cementing long open holes[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):390-395. doi: 10.12358/j.issn.1001-5620.2024.03.015 [7] 周佩, 李谦定, 李辉, 等. 体膨型堵漏材料及其堵漏机理研究进展[J]. 油田化学,2009,26(1):111-114.ZHOU Pei, LI Qianding, LI Hui, et al. Advances in development of expandible lost circulation materials[J]. Oilfield Chemistry, 2009, 26(1):111-114. [8] 张洪利, 郭艳, 王志龙. 国内钻井堵漏材料现状[J]. 特种油气藏,2004,11(2):1-2,10. doi: 10.3969/j.issn.1006-6535.2004.02.001ZHANG Hongli, GUO Yan, WANG Zhilong. Lost circulation materials in China[J]. Special Oil & Gas Reservoirs, 2004, 11(2):1-2,10. doi: 10.3969/j.issn.1006-6535.2004.02.001 [9] 周忠亚. 复兴地区页岩气井油基钻井液井壁稳定和防漏堵漏技术[J]. 钻井液与完井液,2024,41(3):305-317. doi: 10.12358/j.issn.1001-5620.2024.03.004ZHOU Zhongya. Use oil based drilling fluid to stabilize borehole wall and prevent and control mud losses in Fuxing area[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):305-317. doi: 10.12358/j.issn.1001-5620.2024.03.004 [10] 李娟, 刘文堂, 沈士军. 吸水树脂堵漏材料的研究进展[J]. 油田化学,2011,28(1):110-114,109.LI Juan, LIU Wentang, SHEN Shijun. Research progress on water absorbent polymer used as lost-control materials[J]. Oilfield Chemistry, 2011, 28(1):110-114,109. [11] 殷慧,柳华杰,安朝峰,等. 水玻璃复合堵漏体系中氯化钙控释技术[J]. 钻井液与完井液,2024,41(2):239-245.YIN Hui, LIU Huajie, AN Chaofeng, et al. Controlled release of calcium chloride from compounded waterglass-calcium chloride lost circulation material[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):239-245. [12] 贺垠博,许杰,崔国杰,等. 海上某盆地胶结型防漏堵漏钻井液技术[J]. 钻井液与完井液,2024,41(1):68-75.HE Yinbo, XU Jie, CUI Guojie, et al. Research on cementing and loss prevention drilling fluid technology during drilling in the sea basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):68-75. [13] 孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30. [14] 李文哲,付志,张震,等. 用于诱导微裂缝封堵的油基凝胶体系[J]. 钻井液与完井液,2023,40(4):446-452.LI Wenzhe, FU Zhi, ZHANG Zhen, et al. Study and application of an oil-based gel fluid for sealing induced micro-fractures[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):446-452. -