Preparation and Performance Evaluation of Polymer Nanocomposite Viscosifier
-
摘要: 针对目前常用的钻井液增黏剂在高温高盐下增黏性能较差,无法适用于高温深部储层的问题,以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N,N-二乙基-2-丙烯酰胺(DEAM)、N,N-亚甲基双丙烯酰胺(MBA)和改性纳米SiO2颗粒(E-np)为原料,通过原位聚合制备了一种高温增稠性能良好的纳米复合材料E-APNC。通过正交实验对合成条件进行了优化,使用傅里叶变换红外光谱(FT-IR)确定了E-APNC的分子结构,考察了E-APNC的增黏性能、抗剪切性能、耐温性能和耐温抗盐性能。通过24 h的静置实验,考察了nps、N-np、和E-np的分散性,E-np具有更好的分散性。研究结果表明,在常温下1%加量的E-APNC溶液表观黏度达66 mPa·s,与APNC相比具有良好的增黏性能;加量为1%、剪切速率为1021 s−1的E-APNC溶液黏度可达60 mPa·s;在20%NaCl溶液中,200 ℃老化16 h后,E-APNC溶液的表观黏度保持率达65%。与聚合物APNC和N-APNC相比,E-APNC具有更好的抗剪切性能与耐温抗盐性能。Abstract: In response to conventional viscosifiers exhibiting poor performance under high temperature and high salt conditions rendering them ineffective for high-temperature deep reservoirs, this study prepared a novel nanocomposite (E-APNC) via in situ polymerization using 2-acrylamido-2-methylpropanesulfonic acid, N, N diethylacrylamide, N, N methylenebisacrylamide and nano-SiO2 particles (E-np) as raw materials. E-APNC synthetic condition was optimized by orthogonal experimentation, and the molecular structure of E-APNC was evidenced by FT-IR, E-APNC polymer fluid displayed good thickening performance at high temperatures with excellent rheological parameter such as viscosity increase, shear resistance, thermal stability, and salt tolerance. Through the 24 h static experiment, E-np has better dispersibility compared with nps and N-np. At 1%E-APNC, the apparent viscosity at room temperature reached 66 mPa·s, whereas the viscosity shear rate reached 60 mPa·s at high shear rate of 1021 s−1, showcasing the excellent viscosity increasing ability and good anti-shear performance of E-APNC. The apparent viscosity retention rate of the drilling fluid was 65% after aging at 200 ℃ for 16 h under 20% NaCl concentration probing its good temperature and salt resistance performance. Compared with polymer APNC and N-APNC, E-APNC showed strong shear resistance and good temperature resistance, salt resistance.
-
Key words:
- Composite material /
- SiO2 modification /
- Viscosifier /
- Temperature and salt tolerant
-
表 1 正交实验因素水平表
水平 T反应/ ℃(A) 单体配比(B) 纳米材料/%
(C)1 50 AMPS∶DEAM=40%∶60% 2.5 2 55 AMPS∶DEAM=45%∶55% 3.0 3 60 AMPS∶DEAM=50%∶50% 3.5 4 65 AMPS∶DEAM=60%∶40% 4.0 表 2 E-APNC正交实验结果
编号 反应温度 单体配比 纳米材料加量 AV保持率/% 1 A1 B1 C1 41.23 2 A1 B2 C2 38.45 3 A1 B3 C3 45.65 4 A1 B4 C4 35.66 5 A2 B1 C2 45.98 6 A2 B2 C1 40.91 7 A2 B3 C4 47.02 8 A2 B4 C3 41.75 9 A3 B1 C3 39.37 10 A3 B2 C4 35.35 11 A3 B3 C1 42.10 12 A3 B4 C2 46.28 13 A4 B1 C4 37.62 14 A4 B2 C3 48.68 15 A4 B3 C2 44.52 16 A4 B4 C1 40.54 K1 40.248 41.050 41.195 K2 43.915 40.848 43.808 K3 40.775 44.820 43.863 K4 42.840 41.058 38.913 R 3.668 3.975 4.950 -
[1] 谢彬强, 邱正松, 沈忠厚, 等. 温敏缔合共聚物P(NaAMPS-VCL-DVB)的合成及溶液特性[J]. 高分子材料科学与工程,2012,28(9):17-19,23.XIE Binqiang, QIU Zhengsong, SHEN Zhonghou, et al. Synthesis of thermosensitive and Microcross-Linked copolymer P(NaAMPS-VCL-DVB) and their solution properties[J]. Polymer Materials Science & Engineering, 2012, 28(9):17-19,23. [2] 郭拥军, 代刚, 冯茹森, 等. 温敏性共聚物P(DMA-co-DAAM)的合成与热缔合行为研究[J]. 高分子学报,2016(7):871-879.GUO Yongjun, DAI Gang, FENG Rusen, et al. Studies on the synthesis and thermal-induced association behaviors of thermosensitive poly (N, N-dimethylacrylamide-co-diacetone acrylamide)[J]. Acta Polymerica Sinica, 2016(7):871-879. [3] LIU F, YAO H L, LIU Q X, et al. Nano-silica/polymer composite as filtrate reducer in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627:127168. doi: 10.1016/j.colsurfa.2021.127168 [4] 褚奇, 杨枝, 李涛, 等. 硅烷偶联剂改性纳米SiO2堵剂的制备与作用机理[J]. 钻井液与完井液[J],2016,33(4):47-50.CHU Qi, YANG Zhi, LI Tao, et al. Preparation and analyses of Nano SiO2 plugging agent modified with silane coupling agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):47-50. [5] 范开鑫. PAAD/改性纳米二氧化硅共聚物钻井液降滤失剂的制备及性能研究[D]. 成都: 西南石油大学, 2017.FAN Kaixin. Preparation and properties of PAAD/modified nano-silica copolymer fluid loss reducer[D]. Chengdu: Southwest Petroleum University, 2017. [6] 田晓, 周长华, 杨广彬, 等. 表面具有不同官能团的可分散二氧化硅纳米微粒对钻井液滤失性能的影响[J]. 油田化学,2021,38(3):381-387,405.TIAN Xiao, ZHOU Changhua, YANG Guangbin, et al. Effect of dispersible silica nanoparticles with different functional groups on filtration properties of drilling fluid[J]. Oilfield Chemistry, 2021, 38(3):381-387,405. [7] CAO J, SONG T, ZHU Y J. Application of amino-functionalized nanosilica in improving the thermal stability of acrylamide-based polymer for enhanced oil recovery[J]. Energy & Fuels, 2018, 32(1):246-254. [8] 王凯璐, 杨欢, 高洁, 等. 耐温抗盐驱油用纳米分散体系的研制与性能评价[J]. 油田化学,2021,38(4):677-682.WANG Kailu, YANG Huan, GAO Jie, et al. Development and performance evaluation of nano-dispersion system for oil displacement with temperature resistance and salt tolerance[J]. Oilfield Chemistry, 2021, 38(4):677-682. [9] 闫丽丽, 孙金声, 王建华, 等. 新型抗高温抗盐钻井液增黏剂PADA的制备与性能[J]. 石油学报(石油加工),2013,29(3):464-469.YAN Lili, SUN Jinsheng, WANG Jianhua, et al. Preparation and properties of heat-and Salt-Tolerant viscosity improver PADA in Water-Based drilling fluid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(3):464-469. [10] 温建泰, 罗明望, 陈璐鑫, 等. P(AMPS-MBA)-g-P(AM-DEAM)的合成与温敏行为[J]. 高分子材料科学与工程,2021,37(7):35-41.WEN Jiantai, LUO Mingwang, CHEN Luxin, et al. Synthesis and thermosensitive behavior of P(AMPS-MBA)-g-P(AM-DEAM)copolymer[J]. Polymer Materials Science and Engineering, 2021, 37(7):35-41. [11] 陈璐鑫, 卓绿燕, TCHAMENI A P, 等. 温敏聚合物/纳米SiO2复合材料的制备与性能评价[J]. 油田化学,2023,40(1):12-18.CHEN Luxin, ZHUO Luyan, TCHAMENI A P, et al. Synthesis and solution properties of temperature-sensitive polymer/Nano-SiO2 composite N-AMPA[J]. Oilfield Chemistry, 2023, 40(1):12-18. [12] 宋涛. 改性纳米SiO2/丙烯酰胺类聚合物抗温驱油体系研究[D]. 青岛: 中国石油大学(华东), 2019.SONG Tao. Application of surface modified silica in improving the thermal stability of Acrylamide-Based polymer for EOR[D]. Qingdao: China University of Petroleum, 2019. [13] MAURYA N K, MANDAL A. Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery[J]. Petroleum Science and Technology, 2016, 34(5):429-436. doi: 10.1080/10916466.2016.1145693 [14] 赵华强, 王一彪, 彭勃. 纳米SiO2接枝聚丙烯酰胺的黏度和流变性能[J]. 石油学报(石油加工),2022,38(6):1467-1475.ZHAO Huaqiang, WANG Yibiao, PENG Bo. Viscosity and rheological properties of Nano-SiO2 grafted polyacrylamide[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(6):1467-1475. -