留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮稳定关键材料及超高温长效稳定油基钻完井液

谢涛 张磊 杜明亮 李文龙 李治衡 刘海龙

谢涛,张磊,杜明亮,等. 悬浮稳定关键材料及超高温长效稳定油基钻完井液[J]. 钻井液与完井液,2024,41(6):728-735 doi: 10.12358/j.issn.1001-5620.2024.06.004
引用本文: 谢涛,张磊,杜明亮,等. 悬浮稳定关键材料及超高温长效稳定油基钻完井液[J]. 钻井液与完井液,2024,41(6):728-735 doi: 10.12358/j.issn.1001-5620.2024.06.004
XIE Tao, ZHANG Lei, DU Mingliang, et al.Key suspension materials and ultra-high temperature long-term stable oil-based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(6):728-735 doi: 10.12358/j.issn.1001-5620.2024.06.004
Citation: XIE Tao, ZHANG Lei, DU Mingliang, et al.Key suspension materials and ultra-high temperature long-term stable oil-based drilling and completion fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(6):728-735 doi: 10.12358/j.issn.1001-5620.2024.06.004

悬浮稳定关键材料及超高温长效稳定油基钻完井液

doi: 10.12358/j.issn.1001-5620.2024.06.004
基金项目: 国家自然科学基金重大项目“深海深井钻井液漏失机理与防治方法研究”(U23B2082);中国石油大学(北京)科研基金“抗高温无土相油基钻井液流型调节剂研制与作用机理研究”(2462022YJRC005)。
详细信息
    作者简介:

    谢涛,高级工程师,1981 年生,毕业于中国石油大学(华东),主要从事油气钻、完井工程技术研究工作。E-mail:xietao3@cnooc.com.cn

    通讯作者:

    杜明亮,1996年生,在读博士生,现从事钻井液技术研究工作。电话 17819185693;E-mail:mingliang_du@163.com

  • 中图分类号: TE254

Key Suspension Materials and Ultra-High Temperature Long-term Stable Oil-Based Drilling and Completion Fluids

  • 摘要: 针对超高温且长时间下油基钻完井液空间网架结构强度不足导致的携带和悬浮固相能力差的难题,研发了双亲性多嵌段聚合物提切剂HT-TQ和油溶性小分子凝胶剂HT-CB两种抗超高温悬浮稳定关键材料,其中HT-TQ可提高基础乳液的动切力和低剪切速率黏度,HT-CB可提高静切力;优选了海泡石纤维作为悬浮增效剂,与HT-TQ、HT-CB相互协同,可进一步改善乳液超高温热滚后的流变性,提升空间网架结构强度。以上述3种悬浮稳定材料为核心,优选配套处理剂,构建了一套超高温长效稳定油基钻井液,抗温达240 ℃、连续超高温热滚5 d后黏度保持率大于78%,动切力大于5 Pa、低剪切速率切力大于3 Pa,且高温高压流变性良好;以此为基础,使用复配重晶石作为加重材料,构建了一套超高温长效稳定油基完井液,抗温达240 ℃、超高温静置10 d后不分层且无硬性沉降,沉实度小于1.2 N。研究成果可为深层、超深层油气高效钻完井流体提供技术支撑。

     

  • 图  1  双亲性多嵌段聚合物提切剂HT-TQ的合成路线

    图  2  不同剪切速率下不同油水比乳液的黏度变化曲线

    图  3  含不同提切剂乳液高温热滚后的状态

    图  4  HT-CB的合成路线

    图  5  超高温油基钻井液体系高温高压滤失泥饼

    图  6  不同老化时间后超高温油基钻井液状态

    图  7  超高温油基钻井液高温高压流变性能

    图  8  不同时间静置后超高温油基完井液状态

    图  9  不同静置时间后超高温油基完井液的针入式沉降阻力和沉实度  

    表  1  HT-TQ与国外同类产品在含有机土基础乳液中的性能     

    处理剂条件PV/

    mPa·s
    YP/

    Pa
    φ6/φ3Gel/

    Pa/Pa
    LSYP/
    Pa
    0老化前134.65/42.5/3.51.5
    240 ℃、16 h12.51.52/10.5/10.0
    1%R-MOD老化前146.67/64/5.52.5
    240 ℃、16 h123.15/32/30.5
    1%T-POLY老化前167.28/63.5/52.0
    240 ℃、16 h112.03/21.5/20.5
    1%HT-TQ老化前228.712/116.5/8.55.1
    240 ℃、16 h158.210/96/84.1
    下载: 导出CSV

    表  2  不同HT-CB加量下含土乳液的流变性能

    HT-CB/
    %
    老化
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3 Gel/
    Pa/Pa
    0 老化前 20.5 15.0 5.6 6/5 2.0/3.0
    240 ℃、16 h 13.0 11.0 2.0 3/2 1.5/2.0
    1 老化前 26.0 19.0 7.2 9/8 7.5/9.0
    240 ℃、16 h 20.0 14.0 6.1 8/6 5.5/8.0
    2 老化前 30.0 22.0 8.2 11/9 9.0/13.5
    240 ℃、16 h 28.0 21.5 6.6 9/7 7.5/12.0
    3 老化前 38.0 29.5 8.7 14/10 11.0/21.0
    240 ℃、16 h 35.0 27.5 7.7 10/8 9.5/18.5
    下载: 导出CSV

    表  3  HT-TQ、HT-CB和海泡石组合对乳液流变性能的影响

    处理剂条件PV/

    mPa·s
    YP/

    Pa
    φ6/φ3Gel/

    Pa/Pa
    LSYP/
    Pa
    1%HT-TQ+
    1%HT-CB
    老化前25.010.213/119.5/12.04.6
    240 ℃、
    16 h
    24.09.211/108.5/10.54.6
    1%HT-TQ+
    1%HT-CB+
    3%
    海泡石纤维
    老化前26.011.213/1210.0/14.05.6
    240 ℃、
    16 h
    24.59.713/119.5/12.04.6
    下载: 导出CSV

    表  4  超高温油基钻井液的抗高温性能

    实验条件 PV/
    mPa·s
    YP/
    Pa
    φ6/φ3 Gel/
    Pa/Pa
    FLHTHP
    (180 ℃)/mL
    ES/
    V
    老化前 55.0 15.8 18/16 9.5/15.0 1548
    220 ℃、16 h 55.0 13.3 15/14 8.5/13.5 3.8 1298
    240 ℃、16 h 53.0 12.3 15/12 8.0/12.5 4.1 1225
    250 ℃、16 h 43.5 4.6 6/5 3.5/6.0 12.8 1015
    下载: 导出CSV

    表  5  超高温油基钻井液高温长效稳定性能

    t热滚/
    d
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3 Gel/
    Pa/Pa
    LSYP/
    Pa
    FLHTHP/
    (180 ℃)/mL
    ES/
    V
    0 54 16.9 18/16 10.5/16.0 7.2 1689
    1 55 15.8 15/13 9.0/12.5 5.6 5.5 1659
    2 55 12.3 12/11 8.5/12.5 5.1 7.5 1596
    3 59 9.7 11/9 6.5/10.5 3.6 8.2 1274
    5 50 5.1 7/6 4.5/7.5 3.6 9.6 1289
     注:热滚温度为240 ℃。
    下载: 导出CSV

    表  6  超高温油基完井液高温长效稳定性能

    t静置/
    d
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3 Gel/
    Pa/Pa
    ES/
    V
    0 82 63 19.4 22/19 12.5/2.0 1989
    1 84 64 20.4 22/20 13.0/22.0 1759
    3 91 68 23.5 24/21 14.0/23.0 1796
    5 75 63 12.3 18/16 12.0/16.5 1564
    7 77 65 12.3 17/15 12.0/16.0 1594
    10 70 63 7.2 17/12 10.0/16.0 1489
     注:高温静置温度为240 ℃。
    下载: 导出CSV
  • [1] 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005
    [2] 苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542.
    [3] 何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.

    HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172.
    [4] 蒋官澄, 董腾飞, 崔凯潇, 等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发,2022,49(3):577-585. doi: 10.11698/PED.20210666

    JIANG Guancheng, DONG Tengfei, CUI Kaixiao, et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development, 2022, 49(3):577-585. doi: 10.11698/PED.20210666
    [5] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.

    SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5):76-89.
    [6] 黄志洋, 赵雄虎, 苗留洁, 等. 智能流体研究进展及其在钻井液中的应用与展望[J]. 石油钻采工艺,2022,44(3):283-290.

    HUANG Zhiyang, ZHAO Xionghu, MIAO Liujie, et al. Research progress of intelligent fluid and its application to drilling fluids[J]. Oil Drilling & Production Technology, 2022, 44(3):283-290.
    [7] BERN P A, ZAMORA M, SLATER K S, et al. The influence of drilling variables on barite sag[C]//Paper presented at the SPE Annual Technical Conference and Exhibition. Denver, Colorado, 1996: SPE-36670-MS.
    [8] 倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.

    NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138.
    [9] 史赫, 史海民, 倪晓骁, 等. 一种抗高温高密度无土相油基钻井液提切剂[J]. 钻井液与完井液,2022,39(1):8-14.

    SHI He, SHI Haimin, NI Xiaoxiao, et al. Study on rheological modifier of high temperature high density clay-free oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):8-14.
    [10] 王星媛, 吴敬恒, 石朝敏. 加重剂对超高温高密度油基钻完井液性能影响研究[J]. 钻采工艺,2021,44(2):81-85.

    WANG Xingyuan, WU Jingheng, SHI Chaomin. Study on the effect of weighting agent on the performance of ultra-high temperature and high-density oil-based drilling and completion fluid[J]. Drilling & Production Technology, 2021, 44(2):81-85.
    [11] HE Y B, DU M L, HE J, et al. An amphiphilic multiblock polymer as a High-Temperature gelling agent for Oil-Based drilling fluids and its mechanism of action[J]. GELS, 2023, 9(12):966. doi: 10.3390/gels9120966
    [12] 蒋官澄, 史赫, 贺垠博. 生物柴油基恒流变钻井液体系[J]. 石油勘探与开发,2022,49(1):173-182.

    JIANG Guancheng, SHI He, HE Yinbo. The biodiesel-based flat-rheology drilling fluid system[J]. Petroleum Exploration and Development, 2022, 49(1):173-182.
    [13] 孙金声, 黄贤斌, 蒋官澄, 等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718.

    SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):713-718.
    [14] 黄宁, 吕开河, 孙金声, 等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405. doi: 10.12358/j.issn.1001-5620.2022.04.001

    HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405. doi: 10.12358/j.issn.1001-5620.2022.04.001
    [15] HE Y B, JIANG G C, DENG Z Q, et al. Polyhydroxy Gemini surfactant as a mechano-responsive rheology modifier for inverted emulsion drilling fluid[J]. RSC Advances, 2018, 8(1):342-353. doi: 10.1039/C7RA11300E
    [16] 赵景原, 窦旭斌, 冯福平, 等. 有机层状硅酸盐改善油基钻井液沉降稳定性室内评价[J]. 当代化工,2024,53(2):396-400. doi: 10.3969/j.issn.1671-0460.2024.02.030

    ZHAO Jingyuan, DOU Xubin, FENG Fuping, et al. Laboratory evaluation of organophilic phyllosilicate for improving sag stability of oil-based drilling fluid[J]. Contemporary Chemical Industry, 2024, 53(2):396-400. doi: 10.3969/j.issn.1671-0460.2024.02.030
    [17] ZHUANG G Z, ZHANG Z P, PENG S M, et al. Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite[J]. Applied Clay Science, 2018, 161:505-512. doi: 10.1016/j.clay.2018.05.018
    [18] 董晓强, 李雄, 方俊伟, 等. 高密度钻井液高温静态沉降稳定性室内研究[J]. 钻井液与完井液,2020,37(5):626-630.

    DONG Xiaoqiang, LI Xiong, FANG Junwei, et al. Laboratory study on static sedimentation stability of high-density drilling fluids at high temperatures[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):626-630.
    [19] 李家学, 蒋绍宾, 晏智航, 等. 钻完井液静态沉降稳定性评价方法[J]. 钻井液与完井液,2019,36(5):575-580.

    LI Jiaxue, JIANG Shaobin, YAN Zhihang, et al. Study on the methods of evaluating static sedimentation stability of drill-in fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):575-580.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  69
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-08-24
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回