Key Suspension Materials and Ultra-High Temperature Long-term Stable Oil-Based Drilling and Completion Fluids
-
摘要: 针对超高温且长时间下油基钻完井液空间网架结构强度不足导致的携带和悬浮固相能力差的难题,研发了双亲性多嵌段聚合物提切剂HT-TQ和油溶性小分子凝胶剂HT-CB两种抗超高温悬浮稳定关键材料,其中HT-TQ可提高基础乳液的动切力和低剪切速率黏度,HT-CB可提高静切力;优选了海泡石纤维作为悬浮增效剂,与HT-TQ、HT-CB相互协同,可进一步改善乳液超高温热滚后的流变性,提升空间网架结构强度。以上述3种悬浮稳定材料为核心,优选配套处理剂,构建了一套超高温长效稳定油基钻井液,抗温达240 ℃、连续超高温热滚5 d后黏度保持率大于78%,动切力大于5 Pa、低剪切速率切力大于3 Pa,且高温高压流变性良好;以此为基础,使用复配重晶石作为加重材料,构建了一套超高温长效稳定油基完井液,抗温达240 ℃、超高温静置10 d后不分层且无硬性沉降,沉实度小于1.2 N。研究成果可为深层、超深层油气高效钻完井流体提供技术支撑。Abstract: To address the challenge of inadequate structural strength in the spatial framework of oil-based drilling and completion fluids under ultra-high temperatures and extended durations, which leads to poor solid phase carrying and suspension capabilities, two key materials were developed: an amphiphilic multiblock polymer viscosifier (HT-TQ) and an oil-soluble small molecule gelling agent (HT-CB). HT-TQ effectively enhances the yield point and low shear rate viscosity of the base emulsion, while HT-CB significantly improves the static yield point. Sepiolite fibers were selected as suspension enhancers, which, in synergy with HT-TQ and HT-CB, further improve the rheological properties of the emulsion after ultra-high temperature rolling and strengthen the spatial framework structure. Using these three suspension stabilizing materials as the core, optimal additives were selected to construct a highly stable oil-based drilling fluid system suitable for ultra-high temperatures. This system withstands temperatures up to 240 ℃, maintains a viscosity retention rate greater than 78% after five days of continuous ultra-high temperature rolling, with a yield point greater than 5 Pa and LSYP greater than 3 Pa, and exhibits excellent rheological properties under high temperature and high pressure. Additionally, by using compounded barite as a weighting material, a stable oil-based completion fluid system was developed, which withstands temperatures up to 240 ℃ and remains homogeneous without hard settling after ten days of static exposure to ultra-high temperatures, with a settlement degree less than 1.2 N. These research findings provide technical support for efficient drilling and completion fluids in deep and ultra-deep oil and gas reservoirs.
-
表 1 HT-TQ与国外同类产品在含有机土基础乳液中的性能
处理剂 条件 PV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/PaLSYP/
Pa0 老化前 13 4.6 5/4 2.5/3.5 1.5 240 ℃、16 h 12.5 1.5 2/1 0.5/1 0.0 1%R-MOD 老化前 14 6.6 7/6 4/5.5 2.5 240 ℃、16 h 12 3.1 5/3 2/3 0.5 1%T-POLY 老化前 16 7.2 8/6 3.5/5 2.0 240 ℃、16 h 11 2.0 3/2 1.5/2 0.5 1%HT-TQ 老化前 22 8.7 12/11 6.5/8.5 5.1 240 ℃、16 h 15 8.2 10/9 6/8 4.1 表 2 不同HT-CB加量下含土乳液的流变性能
HT-CB/
%老化
条件AV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/Pa0 老化前 20.5 15.0 5.6 6/5 2.0/3.0 240 ℃、16 h 13.0 11.0 2.0 3/2 1.5/2.0 1 老化前 26.0 19.0 7.2 9/8 7.5/9.0 240 ℃、16 h 20.0 14.0 6.1 8/6 5.5/8.0 2 老化前 30.0 22.0 8.2 11/9 9.0/13.5 240 ℃、16 h 28.0 21.5 6.6 9/7 7.5/12.0 3 老化前 38.0 29.5 8.7 14/10 11.0/21.0 240 ℃、16 h 35.0 27.5 7.7 10/8 9.5/18.5 表 3 HT-TQ、HT-CB和海泡石组合对乳液流变性能的影响
处理剂 条件 PV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/PaLSYP/
Pa1%HT-TQ+
1%HT-CB老化前 25.0 10.2 13/11 9.5/12.0 4.6 240 ℃、
16 h24.0 9.2 11/10 8.5/10.5 4.6 1%HT-TQ+
1%HT-CB+
3%
海泡石纤维老化前 26.0 11.2 13/12 10.0/14.0 5.6 240 ℃、
16 h24.5 9.7 13/11 9.5/12.0 4.6 表 4 超高温油基钻井液的抗高温性能
实验条件 PV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/PaFLHTHP
(180 ℃)/mLES/
V老化前 55.0 15.8 18/16 9.5/15.0 1548 220 ℃、16 h 55.0 13.3 15/14 8.5/13.5 3.8 1298 240 ℃、16 h 53.0 12.3 15/12 8.0/12.5 4.1 1225 250 ℃、16 h 43.5 4.6 6/5 3.5/6.0 12.8 1015 表 5 超高温油基钻井液高温长效稳定性能
t热滚/
dPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/PaLSYP/
PaFLHTHP/
(180 ℃)/mLES/
V0 54 16.9 18/16 10.5/16.0 7.2 1689 1 55 15.8 15/13 9.0/12.5 5.6 5.5 1659 2 55 12.3 12/11 8.5/12.5 5.1 7.5 1596 3 59 9.7 11/9 6.5/10.5 3.6 8.2 1274 5 50 5.1 7/6 4.5/7.5 3.6 9.6 1289 注:热滚温度为240 ℃。 表 6 超高温油基完井液高温长效稳定性能
t静置/
dAV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 Gel/
Pa/PaES/
V0 82 63 19.4 22/19 12.5/2.0 1989 1 84 64 20.4 22/20 13.0/22.0 1759 3 91 68 23.5 24/21 14.0/23.0 1796 5 75 63 12.3 18/16 12.0/16.5 1564 7 77 65 12.3 17/15 12.0/16.0 1594 10 70 63 7.2 17/12 10.0/16.0 1489 注:高温静置温度为240 ℃。 -
[1] 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57. doi: 10.3969/j.issn.1672-7703.2020.01.005 [2] 苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542. [3] 何登发, 贾承造, 赵文智, 等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162-1172.HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6):1162-1172. [4] 蒋官澄, 董腾飞, 崔凯潇, 等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发,2022,49(3):577-585. doi: 10.11698/PED.20210666JIANG Guancheng, DONG Tengfei, CUI Kaixiao, et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development, 2022, 49(3):577-585. doi: 10.11698/PED.20210666 [5] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5):76-89. [6] 黄志洋, 赵雄虎, 苗留洁, 等. 智能流体研究进展及其在钻井液中的应用与展望[J]. 石油钻采工艺,2022,44(3):283-290.HUANG Zhiyang, ZHAO Xionghu, MIAO Liujie, et al. Research progress of intelligent fluid and its application to drilling fluids[J]. Oil Drilling & Production Technology, 2022, 44(3):283-290. [7] BERN P A, ZAMORA M, SLATER K S, et al. The influence of drilling variables on barite sag[C]//Paper presented at the SPE Annual Technical Conference and Exhibition. Denver, Colorado, 1996: SPE-36670-MS. [8] 倪晓骁, 史赫, 程荣超, 等. 油基钻井液用改性锂皂石增黏提切剂[J]. 钻井液与完井液,2022,39(2):133-138.NI Xiaoxiao, SHI He, CHENG Rongchao, et al. A modified hectorite viscosifier and gelling agent for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):133-138. [9] 史赫, 史海民, 倪晓骁, 等. 一种抗高温高密度无土相油基钻井液提切剂[J]. 钻井液与完井液,2022,39(1):8-14.SHI He, SHI Haimin, NI Xiaoxiao, et al. Study on rheological modifier of high temperature high density clay-free oil-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):8-14. [10] 王星媛, 吴敬恒, 石朝敏. 加重剂对超高温高密度油基钻完井液性能影响研究[J]. 钻采工艺,2021,44(2):81-85.WANG Xingyuan, WU Jingheng, SHI Chaomin. Study on the effect of weighting agent on the performance of ultra-high temperature and high-density oil-based drilling and completion fluid[J]. Drilling & Production Technology, 2021, 44(2):81-85. [11] HE Y B, DU M L, HE J, et al. An amphiphilic multiblock polymer as a High-Temperature gelling agent for Oil-Based drilling fluids and its mechanism of action[J]. GELS, 2023, 9(12):966. doi: 10.3390/gels9120966 [12] 蒋官澄, 史赫, 贺垠博. 生物柴油基恒流变钻井液体系[J]. 石油勘探与开发,2022,49(1):173-182.JIANG Guancheng, SHI He, HE Yinbo. The biodiesel-based flat-rheology drilling fluid system[J]. Petroleum Exploration and Development, 2022, 49(1):173-182. [13] 孙金声, 黄贤斌, 蒋官澄, 等. 无土相油基钻井液关键处理剂研制及体系性能评价[J]. 石油勘探与开发,2018,45(4):713-718.SUN Jinsheng, HUANG Xianbin, JIANG Guancheng, et al. Development of key additives for organoclay-free oil-based drilling mud and system performance evaluation[J]. Petroleum Exploration and Development, 2018, 45(4):713-718. [14] 黄宁, 吕开河, 孙金声, 等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405. doi: 10.12358/j.issn.1001-5620.2022.04.001HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405. doi: 10.12358/j.issn.1001-5620.2022.04.001 [15] HE Y B, JIANG G C, DENG Z Q, et al. Polyhydroxy Gemini surfactant as a mechano-responsive rheology modifier for inverted emulsion drilling fluid[J]. RSC Advances, 2018, 8(1):342-353. doi: 10.1039/C7RA11300E [16] 赵景原, 窦旭斌, 冯福平, 等. 有机层状硅酸盐改善油基钻井液沉降稳定性室内评价[J]. 当代化工,2024,53(2):396-400. doi: 10.3969/j.issn.1671-0460.2024.02.030ZHAO Jingyuan, DOU Xubin, FENG Fuping, et al. Laboratory evaluation of organophilic phyllosilicate for improving sag stability of oil-based drilling fluid[J]. Contemporary Chemical Industry, 2024, 53(2):396-400. doi: 10.3969/j.issn.1671-0460.2024.02.030 [17] ZHUANG G Z, ZHANG Z P, PENG S M, et al. Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite[J]. Applied Clay Science, 2018, 161:505-512. doi: 10.1016/j.clay.2018.05.018 [18] 董晓强, 李雄, 方俊伟, 等. 高密度钻井液高温静态沉降稳定性室内研究[J]. 钻井液与完井液,2020,37(5):626-630.DONG Xiaoqiang, LI Xiong, FANG Junwei, et al. Laboratory study on static sedimentation stability of high-density drilling fluids at high temperatures[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):626-630. [19] 李家学, 蒋绍宾, 晏智航, 等. 钻完井液静态沉降稳定性评价方法[J]. 钻井液与完井液,2019,36(5):575-580.LI Jiaxue, JIANG Shaobin, YAN Zhihang, et al. Study on the methods of evaluating static sedimentation stability of drill-in fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):575-580. -