留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂缝性致密变质岩气藏钻井液漏失损害机理

游利军 邹俊 康毅力 白瑞婷 刘玉明 谭伟雄 李鑫磊

游利军,邹俊,康毅力,等. 裂缝性致密变质岩气藏钻井液漏失损害机理[J]. 钻井液与完井液,2024,41(6):719-727 doi: 10.12358/j.issn.1001-5620.2024.06.003
引用本文: 游利军,邹俊,康毅力,等. 裂缝性致密变质岩气藏钻井液漏失损害机理[J]. 钻井液与完井液,2024,41(6):719-727 doi: 10.12358/j.issn.1001-5620.2024.06.003
YOU Lijun, ZOU Jun, KANG Yili, et al.Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid,2024, 41(6):719-727 doi: 10.12358/j.issn.1001-5620.2024.06.003
Citation: YOU Lijun, ZOU Jun, KANG Yili, et al.Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid,2024, 41(6):719-727 doi: 10.12358/j.issn.1001-5620.2024.06.003

裂缝性致密变质岩气藏钻井液漏失损害机理

doi: 10.12358/j.issn.1001-5620.2024.06.003
基金项目: 非常规油气层保护四川省青年科技创新研究团队项目“页岩气层氧化协同水力压裂减量增渗方法研究”(2021JDTD0017)。
详细信息
    作者简介:

    游利军,教授,博士,1976年生,现在从事储层保护、非常规油气、岩石物理化学等方面的教学与科研工作。E-mail:youlj0379@126.com

    通讯作者:

    邹俊,在读硕士研究生,1999年生,现从事储层保护、钻完井技术和工作液优化相关工作。E-mail:swpu_zj@163.com

  • 中图分类号: TE254.3;TE282

Mechanisms of Formation Damage by Lost Drilling Fluids in Fractured Tight Metamorphic Rock Gas Reservoirs

  • 摘要: 裂缝性致密储层基块岩样致密、天然裂缝发育,钻井液漏失易诱发储层损害,堵塞孔喉与裂缝,降低储层渗流能力,阻碍油气井稳产。以渤海湾盆地某区块潜山裂缝性致密变质岩储层为研究对象,开展了流体敏感性、钻井液动态损害、钻井液滤饼承压评价实验,明确了钻井液的动态损害程度和滤饼承压能力,分析了储层流体敏感损害机理。结果表明:储层基块强盐敏、中等偏弱碱敏和弱水敏;钻井液固相颗粒粒度与储层裂缝开度不配伍导致固相颗粒侵入储层深部堵塞裂缝造成储层损害,钻井液体系对裂缝宽度在150 μm及以下的裂缝具有良好的封堵效果,对300 μm及以上的裂缝封堵效果较差;裂缝性致密变质岩储层黏土矿物和重矿物发育,钻井液漏失导致黏土矿物水化膨胀和微粒运移,与重矿物反应生成氢氧化铁沉淀加剧储层损害。变质岩储层应强化300 μm及以上宽度裂缝保护,重视变质岩与工作液作用诱发的储层损害,最后提出了地层损害保护措施。

     

  • 图  1  MFC-1型高温高压多功能水平井损害评价仪

    图  2  基于压力衰减法评测变质岩储层流体敏感损害实验结果

    图  3  研究区现用钻井液动态损害后返排渗透率恢复率与返排压差的关系

    图  4  钻井液滤饼变缝宽承压实验结果

    图  5  太古界变质岩储层纵向空间结构特征[16]

    图  6  致密变质岩样品不同半径孔喉渗透率贡献率

    图  7  研究区钻井液粒度及裂缝宽度统计分析

    图  8  研究区变质岩高温碱液损害

    表  1  潜山变质岩储层流体敏感损害评价分析表

    水敏指数/% Dk≤5 5<Dk≤30 30<Dk≤50 50<Dk≤70 70<Dk≤90 Dk>90
    敏感程度 中等偏弱 中等偏强 极强
    下载: 导出CSV

    表  2  储层流体敏感实验结果

    岩样 测试项目 流体类型 敏感指数 损害程度
    Ar-N-4 水敏 地层水 1/2地层水 蒸馏水 25.24
    Ar-N-5 盐敏 地层水 3/4地层水 2/4地层水 1/4地层水 79.85
    Ar-N-6 碱敏 pH=7 pH=10 pH=12 pH=14 37.65 中等偏弱
    下载: 导出CSV

    表  3  研究区现用钻井液动态害实验评价结果

    岩样 缝宽/
    μm
    累计滤失量/
    mL
    钻井液循环/返排
    暂堵率/% 突破压力/MPa 返排恢复率/% 最佳返排压差/MPa
    Ar-N-1 14.77 2.51 98.04 0.18 75.95 0.28
    Ar-N-2 26.71 3.78 99.96 0.12 79.28 0.25
    Ar-N-3 43.70 5.32 99.82 0.10 86.65 0.21
    下载: 导出CSV

    表  4  研究区现用钻井液滤饼承压实验评价结果

    钢制
    柱塞
    缝宽/
    μm
    不同压力(MPa)下的累积漏失量/mL
    0.5 1.5 3 5 7 10
    1# 50 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
    2# 100 <0.1 <0.1 <0.1 <0.1 0.3 0.3
    3# 150 0.3 0.8 0.2 0.4 0.4 0.4
    4# 200 0.4 0.5 1.2 2.6 30+
    (破漏)
    5# 300 28+
    (破漏)
    6# 500 破漏
    7# 1000 破漏
    下载: 导出CSV
  • [1] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-38.

    XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1):25-38.
    [2] 操应长, 孙沛沛, 周立宏, 等. 渤海湾盆地二叠系碎屑岩储集层发育演化特征与勘探方向[J]. 石油勘探与开发,2023,50(5):937-949.

    CAO Yingchang, SUN Peipei, ZHOU Lihong, et al. Evolution characteristics and exploration targets of Permian clastic rock reservoirs in Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2023, 50(5):937-949.
    [3] 刘文超, 汪跃, 廖新武, 等. 渤海西南部海域变质岩潜山优质储层发育规律及成因机理[J]. 海洋地质前沿,2022,38(12):47-55.

    LIU Wenchao, WANG Yue, LIAO Xinwu, et al. Formation and origination of dominant reservoir in metamorphic buried hills in the southwestern Bohai Sea[J]. Marine Geology Frontiers, 2022, 38(12):47-55.
    [4] 朱金智, 徐同台, 吴晓花, 等. 加重剂对抗高温超高密度柴油基钻井液性能的影响[J]. 钻井液与完井液,2019,36(2):160-164.

    ZHU Jinzhi, XU Tongtai, WU Xiaohua, et al. The effects of weight materials on the performance of high temperature ultra-high-density diesel oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):160-164.
    [5] 李文哲, 于兴川, 赖燕, 等. 深层脆性页岩井钻完井液漏失机理及主控因素[J]. 特种油气藏,2022,29(3):162-169.

    LI Wenzhe, YU Xingchuan, LAI Yan, et al. Lost circulation mechanism and main controlling factors in deep brittle shale wells[J]. Special Oil and Gas Reservoirs, 2022, 29(3):162-169.
    [6] 康毅力, 赖哲涵, 陈明君, 等. 基于压力衰减法的页岩气体扩散系数应力敏感性实验[J]. 天然气工业,2022,42(2):59-70.

    KANG Yili, LAI Zhehan, CHEN Mingjun, et al. Stress sensitivity experiments of shale gas diffusion coefficients based on the pressure decay method[J]. Natural Gas Industry, 2022, 42(2):59-70.
    [7] 杨玉贵, 康毅力, 游利军, 等. 孔隙型与裂缝型储层水平井损害实验研究[J]. 西南石油大学学报,2007,29(S2):61-64,173.

    YANG Yugui, KANG Yili, YOU Lijun, et al. Comparative experiments of formation damage of horizontal wells in pore and fractured Reservoirs[J]. Journal of Southwest Petroleum University, 2007, 29(S2):61-64,173.
    [8] KOSYNKIN D V, CERIOTTI G, WILSON K C, et al. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids[J]. ACS Applied Materials & Interfaces, 2012, 4(1):222-227.
    [9] 谭伟雄, 白瑞婷, 邹俊, 等. 渤中某区块太古界潜山裂缝性变质岩储层钻井液损害分析[J]. 断块油气田,2023,30(5):715-720.

    TAN Weixiong, BAI Ruiting, ZOU Jun, et al. Drilling fluid damage analysis of fractured metamorphic rock reservoirs in Archaean buried hills in a block of Bozhong[J]. Fault-Block Oil and Gas Field, 2023, 30(5):715-720.
    [10] 王巧智, 苏延辉, 江安, 等. 可控冲击波增渗解堵技术实验研究[J]. 天然气与石油,2021,39(2):68-74.

    WANG Qiaozhi, SU Yanhui, JIANG An, et al. Experimental research on the technology of permeability enhancement and plug removal by controllable shockwave[J]. Natural Gas and Oil, 2021, 39(2):68-74.
    [11] VIEIRA P, ARNONE M, RUSSEL B, et al. Constant bottomhole pressure: Managed-pressure drilling technique applied in an exploratory well in Saudi Arabia[C]//SPE/IADC Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition. Abu Dhabi, UAE, 2008: SPE-113679-MS.
    [12] FAROOQ H A, KANDASAMI R K, SORRENTINO G, et al. Rupture resistance of filter cake under static filtration using a novel experimental technique[J]. Chemical Engineering Science, 2023, 270:118508. doi: 10.1016/j.ces.2023.118508
    [13] 胡晨光, 潘勇利, 周鑫宇, 等. 临河坳陷变质岩潜山储层形成控制因素及特征[J]. 西安石油大学学报(自然科学版),2023,38(4):20-29.

    HU Chenguang, PAN Yongli, ZHOU Xinyu, et al. Reservoir characteristics and control factors of metamorphic buried hill in Linhe depression[J]. Journal of Xi'an Shiyou University(Natural Science), 2023, 38(4):20-29.
    [14] 张路锋, 周福建, 辜富洋, 等. 裂缝性致密砂岩气藏入井流体伤害规律[J]. 钻井液与完井液,2018,35(5):121-126.

    ZHANG Lufeng, ZHOU Fujian, GU Fuyang, et al. Regularities of fractured tight sandstone gas reservoirs damaged by work fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):121-126.
    [15] 张宇飞,王超群,徐博韬,等. 渤中凹陷裂缝性致密储层钻开液伤害研究[J]. 钻井液与完井液,2024,41(3):325-329.

    ZHANG Yufei, WANG Chaoqun, XU Botao, et al. Study on damage by drilling fluid of fractured tighten reservoirs in Bozhong sag[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):325-329
    [16] 张伙兰, 谢金有, 刘亿, 等. 莺歌海盆地XF区黄流组砂岩储集性能差异的控制因素及其地质意义[J]. 天然气工业,2014,34(5):43-48.

    ZHANG Huolan, XIE Jinyou, LIU Yi, et al. Controlling factors of storage capacity differences of Huangliu Fm sandstone in XF area of the Yinggehai Basin and their geologic significance[J]. Natural Gas Industry, 2014, 34(5):43-48.
    [17] RAZUM I, RUBINIĆ V, MIKO S, et al. Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation[J]. Catena, 2023, 226:107083. doi: 10.1016/j.catena.2023.107083
    [18] PRATAMA M A, KHAN H J, DAIGLE H. A review of formation damage processes encountered during gas hydrate production[J]. Geoenergy Science and Engineering, 2023, 228:211958. doi: 10.1016/j.geoen.2023.211958
    [19] 何瑞兵,谭伟雄,白瑞婷,等. 高温致密砂砾岩储层盐敏及盐析损害机理[J]. 钻井液与完井液,2024,41(2):155-165.

    HE Ruibing, TAN Weixiong, BAI Ruiting, et al. Formation damage in high temperature dense glutenite reservoirs by salt sensitivity and salt precipitation[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):155-165
    [20] 廖高龙,梁豪,马双政,等. 深水钻井液可控因素对气藏损害归因分析形成的气井产能预测[J]. 钻井液与完井液,2024,41(3):330-336.

    LIAO Gaolong, LIANG Hao, MA Shuangzheng, et al. Prediction of gas well productivity based on attribution analysis of controllable factors of hem water-based drilling fluid to gas reservoir damage[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):330-336
    [21] KALHOR Mohammadi M, RIAHI S, BOEK E S. An insight review on formation damage induced by drilling fluids[J]. Reviews in Chemical Engineering, 2023, 39(3):387-415. doi: 10.1515/revce-2020-0106
    [22] 张栋梁, 饶利平, 蔡绪森, 等. 长庆油田低渗储层微粒运移堵塞损害机理[J]. 断块油气田,2023,30(3):441-447.

    ZHANG Dongliang, RAO Liping, CAI Xusen, et al. The mechanism of particle migration and plugging in low-permeability reservoir of Changqing Oilfield[J]. Fault-Block Oil and Gas Field, 2023, 30(3):441-447.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  74
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 修回日期:  2024-08-25
  • 刊出日期:  2024-11-30

目录

    /

    返回文章
    返回