Mechanisms of and Technical Measures for Solving Borehole Wall Instability in Ten-Thousand-Meter Scientific Exploration Wells in Tarim Basin
-
摘要: 针对塔里木油田台盆地区超深、特深地层井壁失稳机理研究不足、认识不清等难题,对目标地区志留系、奥陶系和寒武系5595~10 900 m露头岩石开展了系列研究。分析得出,地层发育平均尺寸在300~800 nm之间的微纳孔缝为钻井液侵入提供了有利通道,导致压力传递、提高了地层坍塌压力;水和油在泥岩表面接触角分别为5.8°和5.3°,在灰岩表面接触角分别为42.5°和15.6°;泥岩吸水率为2.74%、吸油率为3.63%,灰岩吸水率为1.42%、吸油率为2.14%;志留系和桑塔木泥岩、阿瓦塔格泥质白云岩在水中的滚动回收率分别为86.3%、92.9%和98.2%,灰岩和白云岩滚动回收率基本为100%,部分地层由于水化分散造成岩石内聚力强度降低,这些均是导致井壁失稳的主要机理。根据井壁失稳机理,使用抗超高温高效微纳米封堵剂及抗超高温抗盐聚合物降滤失剂,并构建一套特深井防塌水基钻井液体系,通过强化钻井液的封堵性,降低钻井液滤失量、减少钻井液侵入,降低地层坍塌压力;通过提高钻井液的抑制性,减少地层水化分散,提高岩石内聚力强度,实现解决塔里木深部复杂地层井壁失稳的难题。Abstract: In Tarim Basin, borehole wall instability has been an issue encountered in deep and ultra-deep well drilling in the Taipen block, the studies of which are insufficient and the understanding of the mechanisms of which is not clear. In laboratory studies, cores taken from the outcrop rocks of the Silurian, Ordovician and Cambrian strata buried at depths between 5,595 m and 10,900 m in the Taipen block were analyzed, and it was found that fractures with opening sizes between 300 nm and 800 nm are good passages for the invasion of a drilling fluid; borehole pressure is easy to transfer across these fractures and the collapse pressure of the formation is hence increased. The contact angles of water and oil on the surfaces of the mudstone are 5.8° and 5.3° respectively, the contact angles of water and oil on the surfaces of the limestone are 42.5° and 15.6°, respectively. The percent water adsorption and the percent oil adsorption of the mudstones are 2.74% and 3.63%, respectively, and those of the limestones are 1.42% and 2.14%, respectively. The percentages of the recovery of the Silurian system rocks, the Sangtamu mudstone and the Awatage argillaceous dolomite on hot rolling test are 86.3%, 92.9% and 98.2%, respectively, and those of the limestone and the dolomite are both basically 100%. Part of the formations, because of the hydration effect and dispersion in water, have the rock cohesion reduced. These are the main mechanisms that cause borehole wall instability. Based on the mechanisms of borehole wall instability understood, a water based drilling fluid was formulated with a high efficiency nanometer plugging agent, a salt-resistant polymer filter loss reducer and other additives for ultra-deep well drilling. The nanometer plugging agent and the filter loss reducer are all ultra-high temperature resistant. By enhancing the plugging capacity, reducing the filtration rate of the drilling fluid and minimizing the amount of the drilling fluid lost into the formations, the collapse pressures of the formations are reduced. By improving the inhibitive capacity of the drilling fluid, the hydration and dispersion of the formations are inhibited, and the cohesion of the rocks is increased. With these measures, the borehole wall instability issue encountered in drilling the deep complex formations in the Tarim Basin is successfully solved.
-
表 1 不同露头岩石的矿物组分
% 样品 石英 钾长石 斜长石 方解石 白云石 石盐 方沸石 石膏 黄铁矿 赤铁矿 黏土矿物 1# 39.1 0.0 0.0 4.8 11.5 0.0 0.0 0.0 1.5 0.7 42.4 2# 20.6 2.3 16.7 16.4 2.3 0.0 2.4 0.0 0.5 0.6 38.2 3# 0.0 0.0 0.4 1.6 98.0 0.0 0.0 0.0 0.0 0.0 0.0 4# 9.8 0.0 0.0 88.3 1.9 0.0 0.0 0.0 0.0 0.0 0.0 5# 0.0 0.0 0.2 3.5 96.3 0.0 0.0 0.0 0.0 0.0 0.0 6# 15.9 1.0 0.0 0.6 72.8 0.0 0.0 0.0 0.0 1.0 8.7 7# 12.3 0.0 0.0 86.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 8# 0.0 0.0 0.4 0.7 98.9 0.0 0.0 0.0 0.0 0.0 0.0 9# 0.0 0.0 0.5 2.6 96.9 0.0 0.0 0.0 0.0 0.0 0.0 表 2 不同露头岩石的黏土组分
样品 黏土矿物含量/% 伊/蒙混层比/% 蒙皂
石伊利
石高岭
石绿泥
石伊/蒙
混层绿/蒙
混层蒙皂
石层伊利
石层S I K C I/S T/S S% I% 1# 0 41 36 0 23 0 10 90 2# 4 55 0 11 30 0 5 95 6# 0 63 16 0 21 0 5 95 表 3 不同露头岩石孔缝结构参数
样品 平均孔径/nm 孔容/(mL·g−1) 比表面积/(m2·g−1) 孔隙度/% 1# 83.62 0.0120 0.576 3.4663 2# 204.61 0.0092 0.180 3.5176 3# 337.26 0.0134 0.159 3.6079 4# 528.47 0.0106 0.080 2.8123 5# 237.52 0.0152 0.256 4.9480 6# 34.00 0.0250 2.939 9.5628 7# 753.54 0.0061 0.032 1.7193 8# 2213.00 0.0060 0.011 1.6402 9# 892.56 0.0423 0.190 7.5871 表 4 不同露头岩屑的滚动回收率
样品 岩屑热滚前
质量/g岩屑热滚后
质量/g滚动回收率/
%1# 20.00 17.26 86.3 2# 20.00 18.58 92.9 3# 20.00 20.00 100.0 4# 20.00 19.98 99.9 5# 20.00 20.00 100.0 6# 20.00 19.64 98.2 7# 20.00 19.90 99.5 8# 20.00 20.00 100.0 9# 20.00 20.00 100.0 表 5 泥岩岩屑在不同流体中的滚动回收率
液体类型 岩屑热滚前
质量/g岩屑热滚后
质量/g滚动回收率/
%去离子水 20.00 17.26 86.3 常规磺化钻井液 20.00 19.24 96.2 特深井防塌水基
钻井液体系20.00 19.71 98.6 -
[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129136. [2] 苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527542. [3] 郭清, 包莉军, 孙海芳. 中国石油钻井科技攻关三十年回顾与展望(六)[J]. 钻采工艺,2020,43(2):1-6. doi: 10.3969/J.ISSN.1006-768X.2020.02.01GUO Qing, BAO Lijun, SUN Haifang. Thirty-year review and prospect of China's petroleum drilling science and technology research(VI)[J]. Drilling & Production Technology, 2020, 43(2):16. doi: 10.3969/J.ISSN.1006-768X.2020.02.01 [4] 汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177. doi: 10.3787/j.issn.1000-0976.2021.08.015WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163177. doi: 10.3787/j.issn.1000-0976.2021.08.015 [5] 郭旭升, 胡宗全, 李双建, 等. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报,2023,8(4):461-474. doi: 10.3969/j.issn.2096-1693.2023.04.035GUO Xusheng, HU Zongquan, LI Shuangjian, et al. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata[J]. Petroleum Science Bulletin, 2023, 8(4):461474. doi: 10.3969/j.issn.2096-1693.2023.04.035 [6] 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术,2019,47(3):25-33. doi: 10.11911/syztjs.2019062ZENG Yijin. Key technologies for safe and efficient drilling of Marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3):2533. doi: 10.11911/syztjs.2019062 [7] 韩烈祥. 川渝地区超深井钻完井技术新进展[J]. 石油钻采工艺,2019,41(5):555-561.HAN Liexiang. New progress of drilling and completion technologies for ultra-deep wells in the Sichuan-Chongqing area[J]. Oil Drilling & Production Technology, 2019, 41(5):555561. [8] 王兆明, 温志新, 贺正军, 等. 全球近10年油气勘探新进展特点与启示[J]. 中国石油勘探,2022,27(2):27-37. doi: 10.3969/j.issn.1672-7703.2022.02.003WANG Zhaoming, WEN Zhixin, HE Zhengjun, et al. Characteristics and Enlightenment of new progress in global oil and gas exploration in recent ten years[J]. China Petroleum Exploration, 2022, 27(2):2737. doi: 10.3969/j.issn.1672-7703.2022.02.003 [9] 余婷, 曹家俊, 谢建辉, 等. 塔里木油田富源井区深井超深井抗240 ℃高温钻井液体系研究[J]. 山西化工,2024,44(2):118-119,131.YU Ting, CAO Jiajun, XIE Jianhui, et al. Research on drilling fluid system for deep and ultra deep wells in Fuyuan well area of Tarim oilfield to resist high temperature of 240 ℃[J]. Shanxi Chemical Industry, 2024, 44(2):118119,131. [10] 陈县伟. 深井超深井钻井技术现状和发展趋势[J]. 化学工程与装备,2023(1):211-213.CHEN Xianwei. Current status and development trend of drilling technology for deep and ultra-deep wells[J]. Chemical Engineering & Equipment, 2023(1):211213. [11] 王建云, 杨晓波, 王鹏, 等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8-15. doi: 10.11911/syztjs.2020003WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2020, 48(3):815. doi: 10.11911/syztjs.2020003 [12] 陈宗琦, 刘湘华, 白彬珍, 等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1-10. doi: 10.11911/syztjs.2022069CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for Ultra-Deep wells in the Shunbei oil & gas field[J]. Petroleum Drilling Techniques, 2022, 50(4):110. doi: 10.11911/syztjs.2022069 [13] 李献民, 徐文瑞, 杨万祥, 等. 准噶尔盆地南缘山前带地震采集技术及成效[J]. 新疆石油天然气,2021,17(1):6-14. doi: 10.3969/j.issn.1673-2677.2021.01.003LI Xianmin, XU Wenrui, YANG Wanxiang, et al. Seismic acquisition techniques and effectiveness in the premontane zone of the southern margin of the Junggar basin[J]. Xinjiang Oil & Gas, 2021, 17(1):614. doi: 10.3969/j.issn.1673-2677.2021.01.003 [14] DONG X D, SUN J S, HUANG X B, et al. Development of temperature and salt-resistant viscosifier with dual skeleton structure of microcrosslinking and hydrophobic association structures and its application in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684:13301337. [15] CAI J, CHENEVERT M E, SHARMA M M, et al. Decreasing water invasion into atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1):103112. [16] AN Y X, JIANG G C, QI Y R, et al. Synthesis of nano-plugging agent based on AM/AMPS/NVP terpolymer[J]. Journal of Petroleum Science and Engineering, 2015, 135:505514. doi: 10.1016/j.petrol.2015.10.014 [17] 孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):130. doi: 10.12358/j.issn.1001-5620.2024.01.001 [18] 刘锋报, 孙金声, 刘敬平, 等. 抗超高温220 ℃聚合物水基钻井液技术[J]. 钻井液与完井液,2024,41(2):148-154. doi: 10.12358/j.issn.1001-5620.2024.02.002LIU Fengbao, SUN Jinsheng, LIU Jingping, et al. A polymer water based drilling fluid for 220 ℃ bottomhole temperature[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):148154. doi: 10.12358/j.issn.1001-5620.2024.02.002 -