留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转向酸用缓蚀剂的制备及缓蚀机理

崔波 陈军 艾俊哲 冯浦涌 荣新明 王顺

崔波,陈军,艾俊哲,等. 转向酸用缓蚀剂的制备及缓蚀机理[J]. 钻井液与完井液,2024,41(5):677-685 doi: 10.12358/j.issn.1001-5620.2024.05.016
引用本文: 崔波,陈军,艾俊哲,等. 转向酸用缓蚀剂的制备及缓蚀机理[J]. 钻井液与完井液,2024,41(5):677-685 doi: 10.12358/j.issn.1001-5620.2024.05.016
CUI Bo, CHEN Jun, AI Junzhe, et al.Preparation of corrosion inhibitor for self-diverting acid and mechanisms of corrosion inhibition[J]. Drilling Fluid & Completion Fluid,2024, 41(5):677-685 doi: 10.12358/j.issn.1001-5620.2024.05.016
Citation: CUI Bo, CHEN Jun, AI Junzhe, et al.Preparation of corrosion inhibitor for self-diverting acid and mechanisms of corrosion inhibition[J]. Drilling Fluid & Completion Fluid,2024, 41(5):677-685 doi: 10.12358/j.issn.1001-5620.2024.05.016

转向酸用缓蚀剂的制备及缓蚀机理

doi: 10.12358/j.issn.1001-5620.2024.05.016
基金项目: 中海油科研项目“伊拉克米桑油田酸化酸压关键技术研究及应用”(YSB21YF002)。
详细信息
    作者简介:

    崔波,1986年生,硕士,高级工程师,从事储层改造技术研究。E-mail:cuibo2@cosl.com.cn。

    通讯作者:

    艾俊哲,1975年生,副教授,博士,主要研究方向为应用电化学。E-mail:aajzz@163.com。

  • 中图分类号: TE357.12

Preparation of Corrosion Inhibitor for Self-Diverting Acid and Mechanisms of Corrosion Inhibition

  • 摘要: 转向酸广泛应用于碳酸盐岩储层酸化酸压,由于黏弹性表面活性剂分子结构特殊,常规缓蚀剂配伍性较差,且缓蚀效率大幅降低。采用1-氯甲基萘、4-乙基吡啶、氯化苄和2,3-环戊烯并吡啶合成了2种吡啶季铵盐缓蚀剂SI-1和SI-2。采用腐蚀仪、流变仪考察了SI-1和SI-2在转向酸中的缓蚀性能及其对转向酸黏度的影响;通过扫描电子显微镜、能谱仪、原子力显微镜和X射线光电子能谱等实验手段,从微观角度分析钢片腐蚀前后表面形貌和化学成分;采用分子动力学模拟方法对缓蚀剂SI-1和SI-2的缓蚀机理进行了探讨。结果表明:合成的2种吡啶季铵盐缓蚀剂在转向酸中的缓蚀性能良好,对转向酸黏度影响小,适用性强,成本低。其中缓蚀剂SI-2性能更优,1%加量下,90 ℃腐蚀速率为1.04 g/(m2·h),120 ℃腐蚀速率为7.43 g/(m2·h),VES残酸最终黏度可稳定在190 mPa·s以上,成本可降低20%。加入1%缓蚀剂后钢片表面均未出现明显腐蚀,Fe含量大幅上升,表面粗糙度大幅降低,其中添加缓蚀剂SI-2后,Fe含量从86%上升至94%,Ra从137 nm下降至84 nm。钢片表面均检测到C—N与Organic C=O(羰基),表明存在缓蚀剂吸附膜。分子动力学模拟显示缓蚀机理为:SI-2能隙小,吸附能大,缓蚀剂吸附到钢片表面后可形成致密吸附膜,隔绝腐蚀介质与钢片表面的接触,极大地抑制钢片腐蚀。SI-2在渤海油田和伊拉克米桑油田进行了现场应用,施工效果良好。

     

  • 图  1  SI-1合成反应过程

    图  2  SI-2合成反应过程

    图  3  SI-1缓蚀剂对转向酸残酸黏度的影响

    图  4  SI-2缓蚀剂对转向酸残酸黏度的影响

    图  5  90 ℃时N80钢片在不同条件下表面腐蚀形貌图

    图  6  AFM表面形貌结果分析

    图  7  N80钢片在缓蚀剂下的XPS分析    (上图:加1%SI-1;下图:加1%SI-2)

    图  8  优化后缓蚀剂分子结构

    图  9  缓蚀剂分子的最高占有轨道(HOMO)和最低空轨道(LUMO)分布

    图  10  SI-1和SI-2吸附模型

    图  11  渤海某井酸压施工曲线

    表  1  N80钢片化学组成成分 (%)

    CSiMnPSCrMoNiFe
    0.440.321.830.0280.0270.190.280.22余量
    下载: 导出CSV

    表  2  腐蚀实验数据

    缓蚀剂90 ℃腐蚀速率/g/(m2·h)120 ℃腐蚀速率/g/(m2·h)
    空白693.122012.36
    SI-13.3522.56
    SI-21.047.43
    下载: 导出CSV

    表  3  试片表面元素含量测试结果

    类型元素含量/%
    FeCON
    未腐蚀的N80钢片94.426.590.970.48
    未加缓蚀剂86.245.122.450.53
    添加1% SI-193.157.031.230.62
    添加1% SI-294.166.811.090.60
    下载: 导出CSV

    表  4  各体系AFM微观形貌的表面粗糙度参数

    类型 表面粗糙度参数
    Ra Ah Rmax
    未腐蚀的N80钢片 6 65 149
    未加缓蚀剂 137 655 2457
    添加1%SI-1 88 382 1375
    添加1%SI-2 84 411 1306
    下载: 导出CSV

    表  5  N80钢片表面化合物的结合能实验数据与标准数据对比

    原子价态 标准值/eV 1%SI-1
    实验值/eV
    1%SI-2
    实验值/eV
    Fe2O3 FeCl2 C—N
    Fe2p 710.9 710.4 711.2、710.6 711.1、710.5
    O1s 530.2 529.8 530.1
    C1s 284 283.7 284.3
    N1s 400 400.5 399.8
    Cl2s 199 198.5 200.2
    下载: 导出CSV

    表  6  2种缓蚀剂分子的全局活性参数

    参数缓蚀剂
    SI-1SI-2
    EHOMO−4.861−4.497
    ELOMO−2.032−2.562
    χ3.4473.530
    η1.4150.968
    μ−3.447−3.530
    σ0.7071.033
    N1.2551.792
    ω4.1996.436
    E2.8691.935
    下载: 导出CSV

    表  7  缓蚀剂价格及缓蚀性能对比

    缓蚀剂 成本/
    元/t
    90 ℃腐蚀速率/
    g/(m2·h)
    120 ℃腐蚀速率/
    g/(m2·h)
    SI-1 32240 3.35 22.56
    SI-2 27200 1.04 7.43
    市面商用缓蚀剂
    PA-COH1
    34060 3.95 24.81
    转向酸用缓蚀剂ZXHS[5] 4.93 19.86
    转向酸用
    缓蚀剂[6]
    27.00
    转向酸用
    缓蚀剂[7]
    7.90
    下载: 导出CSV
  • [1] 马超, 赵林, 杨海, 等. 高温气井非均质碳酸盐储层自转向酸的研制与应用[J]. 油田化学,2020,37(4):604-608,615.

    MA Chao, ZHAO Lin, YANG Hai, et al. Development and application of self-steering acid in heterogeneous carbonate reservoir of high temperature gas well[J]. Oilfield Chemistry, 2020, 37(4):604-608,615.
    [2] 张潦源, 曲占庆, 王云川, 等. 芥酸酰胺丙基羟磺基甜菜碱自转向酸制备与性能研究[J]. 化学研究与应用,2020,32(11):2028-2033. doi: 10.3969/j.issn.1004-1656.2020.11.013

    ZHANG Liaoyuan, QU Zhanqing, WANG Yunchuan, et al. Preparation and properties of erucylamidopropyl hydroxy sulfobetaine-based self-diverting acid[J]. Chemical Research and Application, 2020, 32(11):2028-2033. doi: 10.3969/j.issn.1004-1656.2020.11.013
    [3] 荣新明, 张博, 张强, 等. 甜菜碱类酸化自转向剂的性能评价[J]. 应用化工,2020,49(11):2693-2695,2700. doi: 10.3969/j.issn.1671-3206.2020.11.005

    RONG Xinming, ZHANG Bo, ZHANG Qiang, et al. Evaluation of betaine-based acidic self-diverting agent[J]. Applied Chemical Industry, 2020, 49(11):2693-2695,2700. doi: 10.3969/j.issn.1671-3206.2020.11.005
    [4] 毛金成, 王晨, 张恒, 等. 阳离子VES转向酸体系的研制及性能评价[J]. 石油与天然气化工,2019,48(6):65-69. doi: 10.3969/j.issn.1007-3426.2019.06.013

    MAO Jincheng, WANG Chen, ZHANG Heng, et al. Development and performance evaluation of cationic VES diverting acid system[J]. Chemical Engineering of Oil and Gas, 2019, 48(6):65-69. doi: 10.3969/j.issn.1007-3426.2019.06.013
    [5] 王云云, 杨彬, 张镇, 等. 自转向酸用缓蚀剂的研究与应用[J]. 钻井液与完井液,2017,34(5):96-99. doi: 10.3969/j.issn.1001-5620.2017.05.018

    WANG Yunyun, YANG Bin, ZHANG Zhen, et al. Study and application of a corrosion inhibitor used in self-diverting acid[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):96-99. doi: 10.3969/j.issn.1001-5620.2017.05.018
    [6] 刘倍贝, 周福建, 胡大鹏. 黏弹性表面活性剂转向酸缓蚀剂研究进展[J]. 石油与天然气化工,2015,44(5):86-89. doi: 10.3969/j.issn.1007-3426.2015.05.018

    LIU Beibei, ZHOU Fujian, HU Dapeng. Research progress of corrosion inhibitor for viscoelastic surfactant-based self-diverting acid[J]. Chemical Engineering of Oil and Gas, 2015, 44(5):86-89. doi: 10.3969/j.issn.1007-3426.2015.05.018
    [7] 蔡远红, 罗炽臻. 表面活性酸黏度影响因素及缓蚀控制[J]. 钻采工艺,2010,33(z1):146-150.

    CAI Yuanhong, LUO Chizhen. Factors affecting viscosity of surface active acid and corrosion mitigation control[J]. Drilling & Production Technology, 2010, 33(z1):146-150.
    [8] 陆强民. 表面活性剂变粘酸体系中缓蚀剂缓蚀剂的配伍性研究[D]. 北京: 中国石油大学(北京), 2017.

    LU Qiangmin. Compatibility study of inhibitors in surfactants viscous acid systems[D]. Beijing: China University of Petroleum(Beijing), 2017.
    [9] HANAFY A, NASR-EL-DIN H, RABIE A, et al. Effect of corrosion–inhibitor chemistry on the viscosity and corrosion rate of VES-Based acids[C]//SPE International Conference on Oilfield Chemistry. Galveston, Texas, USA: SPE, 2019: SPE-193574-MS.
    [10] LI L, NASR-EL-DIN H A A, ZHOU J, et al. Compatibility and phase behavior studies between corrosion inhibitors and surfactants-based acids[C]//SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2012: SPE-151641-MS.
    [11] AFRA S, SAMOUEI H, NASR-EL-DIN H. NMR investigation of viscoelastic surfactants compatibility with corrosion inhibitors[C]//International Petroleum Technology Conference. Dhahran, Kingdom of Saudi Arabia: IPTC, 2020: IPTC-19601-MS.
    [12] 阚伟海, 陈莉荣, 姜庆宏, 等. 复合缓蚀剂对碳钢腐蚀率的影响研究[J]. 表面技术,2015,44(4):127-131.

    KAN Weihai, CHEN Lirong, JIANG Qinghong, et al. Study on effects of composite corrosion inhibitor on the corrosion rate of carbon steel[J]. Surface Technology, 2015, 44(4):127-131.
    [13] 艾俊哲, 王欢, 段立东. 噻唑衍生物的缓蚀润滑性能及其在N80钢表面的吸附行为[J]. 腐蚀科学与防护技术,2019,31(5):501-507. doi: 10.11903/1002.6495.2019.026

    AI Junzhe, WANG Huan, DUAN Lidong. Inhibition and lubrication properties of thiazole derivative and its adsorption behaviour on N80 steel[J]. Corrosion Science and Protection Technology, 2019, 31(5):501-507. doi: 10.11903/1002.6495.2019.026
    [14] 刘博祥, 许可, 卢拥军, 等. 新型曼尼希碱缓蚀剂的合成及缓蚀机理研究[J]. 应用化工,2022,51(9):2548-2552.

    LIU Boxiang, XU Ke, LU Yongjun, et al. Study on synthesis and mechanism of new Mannich base corrosion inhibitor[J]. Applied Chemical Industry, 2022, 51(9):2548-2552.
    [15] AL-GHAMDI A H, NASR-EL-DIN H A, AL-QAHTANI A A, et al. Impact of acid additives on the rheological properties of viscoelastic surfactants and their influence on field application[C]//SPE/DOE Symposium on Improved Oil Recovery. Tulsa, Oklahoma: SPE, 2004: SPE-89418-MS.
    [16] KUDRASHOU V Y, NASR-EL-DIN K H. Formation damage and compatibility issues associated with use of corrosion inhibitors in well acidizing-a review[C]//SPE Well Intervention Conference and Exhibition, The Woodlands, Texas, USA: SPE, 2019: SPE-194301-MS.
    [17] 张强, 崔波, 荣新明, 等. 曼尼希碱酸化缓蚀剂的缓蚀性能与缓蚀微观机理评价[J]. 能源化工,2023,44(3):43-48. doi: 10.3969/j.issn.1006-7906.2023.03.010

    ZHANG Qiang, CUI Bo, RONG Xinming, et al. Evaluation of corrosion inhibition performance and microscopic mechanism of Mannich base acidizing corrosion inhibitor[J]. Energy Chemical Industry, 2023, 44(3):43-48. doi: 10.3969/j.issn.1006-7906.2023.03.010
    [18] 魏晓静, 石鑫, 葛鵬莉, 等. 改性咪唑啉类缓蚀剂缓蚀机理的分子模拟[J]. 分子科学学报,2021,37(4):352-359.

    WEI Xiaojing, SHI Xin, GE Pengli, et al. Molecular simulation of imidazoline corrosion inhibition by modification[J]. Journal of Molecular Science, 2021, 37(4):352-359.
    [19] 戴秀兰,魏俊,闫秀,等. 一种重建井筒用胍胶压裂液的制备及性能[J]. 钻井液与完井液,2024,41(2):262-269.

    DAI Xiulan, WEI Jun, YAN Xiu, et al. Preparation and properties of a guanidine gel fracturing fluid system for wellbore reconstruction[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):262-269
    [20] 崔波,冯浦涌,姚二冬,等. 单相缓速酸酸蚀裂缝导流规律[J]. 钻井液与完井液,2024,41(2):270-278.

    CUI Bo, FENG Puyong, YAO Erdong, et al. Development and corrosion inhibition mechanisms of a corrosion inhibitor for selfdiverting acids[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):270-278
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  65
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-04-20
  • 刊出日期:  2024-11-07

目录

    /

    返回文章
    返回