Technology for Cementing High Pressure Narrow Density Window Gas Zones in Well Dongqiu-X
-
摘要: 东秋X井是部署在塔里木盆地库车坳陷秋里塔格构造带上的一口预探井,五开采用Φ215.9 mm钻头、密度为2.17 g/cm3钻井液钻至井深6130 m中途完钻,钻进期间发生多次漏失且裸眼段有多套油气显示,压稳防漏矛盾突出,安全密度窗口仅为0.06 g/cm3,固井过程中极易出现恶性漏失,甚至还会发生由漏转喷等复杂。通过采用精细控压固井技术强化井筒压力控制,使用韧性自愈合水泥浆保障井筒长期完整性,配套带顶封尾管悬挂器辅助密封等技术措施,顺利完成东秋X井固井施工,经 CBL/VDL测井解释固井质量合格率为94.3%,六开降钻井液密度后钻进及完井正常,未见环空带压等异常情况。该技术解决了窄密度窗口高压气井溢漏同存的难题,并可保障封固井段的初次固井质量和长期密封完整性,可为窄窗口高压气井、复杂井的固井技术提供参考。Abstract: The well Dongqiu-X is an exploration well drilled in the Qiulitage tectonic zone of the Kuche sag in the Tarim Basin. The fifth interval of the well was drilled to a depth of 6,130 m with Φ215.9 mm bits and a drilling fluid of 2.17 g/cm3, and was prematurely completed at that depth. During drilling mud losses occurred several times and oil and gas shows in the open hole section were encountered at different depths. Oil/gas kick and mud losses coexist in the same interval, with safe drilling window of only 0.06 g/cm3, meaning that severe losses of cement slurries during well cementing are prone to happen, and the losses of cement slurries may induce well blowout. To deal with this problem, precise pressure control while drilling was adopted to safely control the wellbore pressure, and a tough self-healing cement slurry was used to ensure the long-time integrity of the wellbore. The well Dongqiu-X was successfully cemented using the self-healing cement slurry combined with the use of liner hanger with top packer for auxiliary sealing. CBL/VDL logging results showed that the percent qualified cementing job was 94.3%. When the sixth interval was drilled with a mud of lower density, the drilling operation and the well completion operation were all successfully conducted , and no pressure trap in the annular space was found. The use of the well cementing technology has successfully solved the difficulties encountered in drilling high pressure gas well.
-
表 1 东秋X井不同浆体的流变性能
T/
℃浆体名称 φ600 φ300 φ200 φ100 φ6 φ3 n K/
Pa·sn93 钻井液 60 33 22 14 3 2 0.91 0.05 130
↓93隔离液 62 36 24 15 5 4 0.92 0.05 领浆 ﹥300 235 163 85 8 5 0.93 0.36 123
↓93尾浆 ﹥300 253 175 93 9 6 0.93 0.40 表 2 东秋X井领浆的力学性能
养护
条件编号 实验
类型围压/
MPa抗拉强度/
MPap/
MPa弹性模量/
GPa100 ℃
养护72 h1 单轴力学
性能测试0 20.6 3.95 2 三轴力学
性能测试4.5 23.2 2.68 3 三轴力学
性能测试9.0 21.9 2.09 4 单轴抗拉
强度测试1.99 表 3 东秋X井领浆的自愈合性能
裂缝
类型裂缝等效宽度
(3 MPa围压)/μm初期气测渗
透率/
mD终期气测渗
透率/
mD渗透率
降低/
%人工
劈开99.5 40.30 4.800 88.1 微裂缝 22.7 4.56 0.014 99.3 表 4 不同井段下套管的速度控制
井段/
m下套管速度 备注 0~1000 ≥70 s/根 下尾管 1000~1920 ≥110 s/根 下尾管 1920~4510 ≥155 s/柱 上层套管内送钻 4510~6120 ≥145 s/柱 裸眼段送钻 表 5 东秋X井固井施工流程表
施工流程 ρ/
g·cm−3注入量/
m3排量/
L·s−1立管压力/
MPa控压值/
MPa管线试压 2.15 30 控压5 注前置液 2.15 45.0 17~18 14~16 停泵控压5 注领浆 2.18 30.0 17~19 13~17 停泵控压5 注尾浆 2.18 30.0 17~19 13~16 停泵控压5 投塞 控压5 替后置液 2.15 5.0 16~17 13~17 停泵控压5 钻井液 2.12 21.0 18 18~21 停泵控压5 替保护液 2.15 15.0 16~17 13~17 停泵控压5 替重浆、
碰压2.27 27.7 13~18 9~16 停泵控压5 表 6 东秋X井固井质量评价结果
类型 固井
总长度/m优质段
长度/m良好段
长度/m差段
长度/m优质率/
%合格率/
%一界面
统计1937.9 996.9 895.2 45.8 51.4 97.6 二界面
统计1937.9 1187.8 641.1 109.0 61.3 94.4 综合固
井统计1938.0 973.2 854.1 110.7 50.2 94.3 -
[1] 王招明. 塔里木盆地库车坳陷克拉苏盐下深层气田形成机制与富集规律[J]. 天然气地球科学,2014,25(2):153-166. doi: 10.11764/j.issn.1672-1926.2014.02.0153WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2):153-166. doi: 10.11764/j.issn.1672-1926.2014.02.0153 [2] 李德江, 易士威, 冉启贵, 等. 塔里木盆地库车坳陷东秋里塔格构造样式及勘探前景[J]. 天然气地球科学,2016,27(4):584-590. doi: 10.11764/j.issn.1672-1926.2016.04.0584LI Dejiang, YI Shiwei, RAN Qigui, et al. Structural characters and potentiality of the East Qiulitage anticline belt in Kuqa depression[J]. Natural Gas Geoscience, 2016, 27(4):584-590. doi: 10.11764/j.issn.1672-1926.2016.04.0584 [3] 杨敏, 赵一民, 闫磊, 等. 塔里木盆地东秋里塔格构造带构造特征及其油气地质意义[J]. 天然气地球科学,2018,29(6):826-833. doi: 10.11764/j.issn.1672-1926.2018.04.008YANG Min, ZHAO Yimin, YAN Lei, et al. Structural features of the eastern Qiulitage Tectonic Belt and petroleum geological significance[J]. Natural Gas Geoscience, 2018, 29(6):826-833. doi: 10.11764/j.issn.1672-1926.2018.04.008 [4] 张荣虎, 杨海军, 魏红兴, 等. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学,2019,30(9):1243-1252. doi: 10.11764/j.issn.1672-1926.2019.05.005ZHANG Ronghu, YANG Haijun, WEI Hongxing, et al. The sandstone characteristics and hydrocarbon exploration signification of lower Jurassic in middle east section of northern tectonic belt in Kuqa depression, Tarim basin[J]. Natural Gas Geoscience, 2019, 30(9):1243-1252. doi: 10.11764/j.issn.1672-1926.2019.05.005 [5] 刘洋, 陈敏, 吴朗, 等. 四川盆地窄密度窗口超深井控压固井工艺[J]. 钻井液与完井液,2020,37(2):214-220. doi: 10.3969/j.issn.1001-5620.2020.02.014LIU Yang, CHEN Min, WU Lang, et al. Managed pressure well cementing techniques for wells with narrow safe drilling windows in Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):214-220. doi: 10.3969/j.issn.1001-5620.2020.02.014 [6] 陈永衡, 冯少波, 邓强, 等. 大北X井盐膏层尾管精细控压固井技术[J]. 钻井液与完井液,2020,37(4):521-525. doi: 10.3969/j.issn.1001-5620.2020.04.019CHEN Yongheng, FENG Shaobo, DENG Qiang, et al. Cementing liner string through salt formation in well Dabei-X by precise pressure control[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):521-525. doi: 10.3969/j.issn.1001-5620.2020.04.019 [7] 王小文, 张维滨, 郑会锴, 等. 控压固井技术简介[J]. 西部探矿工程,2019,31(1):37-40. doi: 10.3969/j.issn.1004-5716.2019.01.014WANG Xiaowen, ZHANG Weibin, ZHENG Huikai, et al. Introduction of managed pressure well cementing technology[J]. West-China Exploration Engineering, 2019, 31(1):37-40. doi: 10.3969/j.issn.1004-5716.2019.01.014 [8] 马勇, 郑有成, 徐冰青, 等. 精细控压压力平衡法固井技术的应用实践[J]. 天然气工业,2017,37(8):61-65. doi: 10.3787/j.issn.1000-0976.2017.08.007MA Yong, ZHENG Youcheng, XU Bingqing, et al. Application precise MPD & pressure balance cementing technology[J]. Natural Gas Industry, 2017, 37(8):61-65. doi: 10.3787/j.issn.1000-0976.2017.08.007 [9] 郭建华, 郑有成, 李维, 等. 窄压力窗口井段精细控压压力平衡法固井设计方法与应用[J]. 天然气工业,2019,39(11):86-91. doi: 10.3787/j.issn.1000-0976.2019.11.011GUO Jianhua, ZHENG Youcheng, LI Wei, et al. Design and application of well cementing technology based on the precise managed pressure balancing method in narrow pressure window hole sections[J]. Natural Gas Industry, 2019, 39(11):86-91. doi: 10.3787/j.issn.1000-0976.2019.11.011 [10] 杨雄文, 周英操, 方世良, 等. 国内窄窗口钻井技术应用对策分析与实践[J]. 石油矿场机械,2010,39(8):7-11. doi: 10.3969/j.issn.1001-3482.2010.08.002YANG Xiongwen, ZHOU Yingcao, FANG Shiliang, et al. Strategy analysis of narrow window drilling technology and practice[J]. Oil Field Equipment, 2010, 39(8):7-11. doi: 10.3969/j.issn.1001-3482.2010.08.002 [11] 彭明佳, 周英操, 郭庆丰, 等. 窄密度窗口精细控压钻井重浆帽优化技术[J]. 石油钻探技术,2015,43(6):24-28. doi: 10.11911/syztjs.201506005PENG Mingjia, ZHOU Yingcao, GUO Qingfeng, et al. Optimization of heavy mud cap in narrow density window precise managed pressure drilling[J]. Petroleum Drilling Techniques, 2015, 43(6):24-28. doi: 10.11911/syztjs.201506005 [12] 石蕊, 徐璧华, 蔡翔宇, 等. 精细控压固井中的控压降密度方法[J]. 钻采工艺,2019,42(5):35-38. doi: 10.3969/J.ISSN.1006-768X.2019.05.10SHI Rui, XU Bihua, CAI Xiangyu, et al. How to reduce density at managed pressure during precise managed-pressure cementing[J]. Drilling & Production Technology, 2019, 42(5):35-38. doi: 10.3969/J.ISSN.1006-768X.2019.05.10 [13] 刘爱萍, 邓金根. 委内瑞拉Caracoles油田固井技术[J]. 天然气工业,2005,25(9):67-69. doi: 10.3321/j.issn:1000-0976.2005.09.022LIU Aiping, DENG Jingen. Cementing technology used for Caracoles oil field in Venezuela[J]. Natural Gas Industry, 2005, 25(9):67-69. doi: 10.3321/j.issn:1000-0976.2005.09.022 [14] 王纯全, 徐峰. YK5H井壁面剪应力理论固井实践[J]. 钻采工艺,2007,30(6):125-126. doi: 10.3969/j.issn.1006-768X.2007.06.043WANG Chunquan, XU Feng. Practice of wall shear stress cementing theory in well YK5H[J]. Drilling & Production Technology, 2007, 30(6):125-126. doi: 10.3969/j.issn.1006-768X.2007.06.043 [15] 孙晓杰, 余纲, 瞿志浩, 等. 自愈合水泥在塔里木油田碎屑岩固井中的应用[J]. 天然气与开发,2017,35(4):63-67.SUN Xiaojie, YU Gang, QU Zhihao, et al. The application of Self-Healing cement in Tarim clastic rock well[J]. Natural Gas and Oil, 2017, 35(4):63-67. [16] 杨炳祥, 刘浩亚, 魏浩光, 等. 自愈合水泥浆体系在四川地区的应用[J]. 钻井液与完井液,2022,39(1):65-70. doi: 10.12358/j.issn.1001-5620.2022.01.011YANG Bingxiang, LIU Haoya, WEI Haoguang, et al. Application of autonomous healing cement slurry system in Sichuan[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):65-70. doi: 10.12358/j.issn.1001-5620.2022.01.011 [17] 刘金璐,李军,李辉,等. 控压固井注入阶段井筒压力预测模型[J]. 钻井液与完井液,2024,41(2):231-238.LIU Jinlu, LI Jun, LI Hui, et al. A model for predicting wellbore pressure during the managed pressure cementing injection stage[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):231-234 [18] 王明辉,李进,韩耀图,等. 基于超声Lamb波的固井质量评价新技术与应用[J]. 钻井液与完井液,2023,40(4):519-526.WANG Minghui, LI Jin, HAN Yaotu, et al. A new technology for evaluating job quality of well cementing based on ultrasonic lamb wave and its application[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):519-526 [19] 郝海洋,刘俊君,何吉标,等. 页岩气超长水平井预控水泥环封固失效水泥浆技术[J]. 天然气勘探与开发,2022,45(3):108-115.HAO Haiyang, LIU Junjun, HE Jibiao, et al. Cement slurry technology for preventing and controlling cement sheath integrity failure in ultra-long horizontal shale gas wells[J]. Natural Gas Exploration and Development, 2022, 45(3):108-115 -