Study on Corrosion Rate of Cement Monomineralic C2S in CO2 Geological Sequestration Environment
-
摘要: 在CO2地质封存和利用过程中,固井水泥容易与井下的酸性介质CO2发生碳酸化反应,腐蚀固井水泥石造成水泥石力学性能大幅度衰退。针对水泥石单矿C2S在CO2地质封存和利用环境中腐蚀反应速率不清晰的问题,通过SEM、XRD以及TG的测试方法,定量分析C2S腐蚀产物的变化规律。根据腐蚀产物CaCO3的摩尔生成率和非稳态扩散渗透模型拟合得到腐蚀反应产物CaCO3的生成系数α。SEM实验结果表明,腐蚀反应后C2S水泥单矿颗粒的表面均有较大改变,生成了部分腐蚀产物CaCO3;XRD结果表明,单矿C2S腐蚀产物CaCO3的晶型主要有方解石和文石;TG测试结果表明,C2S水泥单矿随着腐蚀龄期的增加,腐蚀产物的量均明显增加。拟合结果表明,C2S腐蚀产物生成速率随着温度的升高而增大,90 ℃下CaCO3腐蚀产物的生成速率系数α最大为54.90。Abstract: In geological sequestration and application of CO2, the cement used in well cementing is easy to react with CO2, an acidic gas produced downhole, causing the set cement for well cementing to be corroded and the mechanical properties of the set cement decline remarkably. Presently, the corrosion rate of the set cement monomineralic C2S in CO2 geological sequestration and application environment is still not clearly understood. In this study, several measuring methods, such as SEM, XRD and TG etc., are used to quantitatively analyze the changes of the corrosion products of C2S. The yield coefficient α of the corrosion product CaCO3 can be obtained by fitting the molar yield rate of the corrosion product CaCO3 with the non-steady state diffusion permeation model. The SEM experimental results show that after the corrosion reaction, the surfaces of the C2S cement monomineralic particles have undergone great changes, producing part of the corrosion product CaCO3; The XRD experimental results show that crystal forms of the corrosion product CaCO3 of the monomineralic C2S are mainly calcite and aragonite. The TG experimental results show that the amount of the corrosion products increases with the corrosion time of the C2S cement monomineral. The fitting results indicate that the yield rate of the corrosion products of C2S increases with temperature, at 90 ℃ the yield rate of the corrosion product CaCO3 has a maximum yield coefficient α of 54.90.
-
Key words:
- C2S /
- CO2 storage and utilization /
- Phase quantification /
- CO2 corrosion reaction rate
-
表 1 C2S试样在不同温度和龄期下CaCO3的摩尔生成率
腐蚀龄期/d 腐蚀温度/ ℃ $ \bar {P} $/(mol/d) 1 30 21.91 60 34.37 90 45.93 3 30 7.66 60 16.79 90 16.60 7 30 4.41 60 7.30 90 7.87 14 30 3.54 60 4.42 90 3.94 28 30 2.03 60 2.11 90 2.10 表 2 水泥单矿C2S腐蚀产物CaCO3的摩尔生成率拟合结果
样品 腐蚀温度/ ℃ α $ \beta $ R2 C2S 30 24.40 −3.859 0.955 60 40.59 −6.580 0.995 90 54.90 −11.190 0.976 -
[1] EVERS J. A roadmap to net zero: The International Energy Agency has presented a roadmap for the global energy sector to reach net-zero CO2 emissions by 2050. What contribution could nuclear make?[J]. Nuclear Engineering International, 2021, 66(803):216-217. [2] 刘琦, 赵莉, 马忠诚, 等. 用于CCUS地质封存的CO2响应型智能凝胶封窜体系[J]. 油田化学,2022,39(4):623-629.LIU Qi, ZHAO Li, MA Zhongcheng, et al. CO2 responsive smart gel sealants for CCUS geological storage[J]. Oilfield Chemistry, 2022, 39(4):623-629. [3] ZHANG J, WANG C N, PENG Z G, et al. Corrosion integrity of oil cement modified by environment responsive microspheres for CO2 geologic sequestration wells[J]. Cement and Concrete Research, 2021, 143:106397. doi: 10.1016/j.cemconres.2021.106397 [4] 龚鹏, 程小伟, 武治强, 等. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报,2023,37(7):67-73.GONG Peng, CHENG Xiaowei, WU Zhiqiang, et al. Research on the effect of Calcium carbonate whiskers on the self-healing of cement stone cracks induced by CO2[J]. Materials Reports, 2023, 37(7):67-73. [5] 饶志华, 邓成辉, 马倩芸, 等. CCUS 井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液,2023,40(4):495-501.RAO Zhihua, DENG Chenghui, MA Qianyun, et al. Comparative study on effects of different crystallographic materials on selfhealing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & amp; Completion Fluid, 2023, 40(4):495-501. [6] 武治强, 武广瑷, 幸雪松. CO2 腐蚀-应力耦合下固井水泥环密封完整性[J]. 钻井液与完井液,2024,41(2):220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012WU Zhiqiang, WU Guang’ai, XING Xuesong. Sealing integrity of cement sheath under the condition of CO2 corrosion-stress coupling[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012 [7] 张景富, 俞庆森, 徐明, 等. G级油井水泥的水化及硬化[J]. 硅酸盐学报,2002,30(2):167-171,177. doi: 10.3321/j.issn:0454-5648.2002.02.006ZHANG Jingfu, YU Qingsen, XU Ming, et al. Hydration and hardening of class G oilwell cemnet[J]. Journal of the Chinese Ceramic Society, 2002, 30(2):167-171,177. doi: 10.3321/j.issn:0454-5648.2002.02.006 [8] 刘思楠, 张力为, 甘满光, 等. 地质封存环境CO2压力影响水泥碳化程度的试验研究[J]. 中国电机工程学报,2022,42(9):3126-3134.LIU Sinan, ZHANG Liwei, GAN Manguang, et al. Experimental study of the effect of CO2 pressure on the degree of cement carbonation under geologic CO2 storage environment[J]. Proceedings of the CSEE, 2022, 42(9):3126-3134. [9] 袁彬, 袁坤峰, 徐璧华, 等. 基于固体钙含量的CO2 腐蚀水泥石规律预测[J]. 西南石油大学学报(自然科学版),2021,43(4):191-198.YUAN Bin, YUAN Kunfeng, XU Bihua, et al. Prediction of CO2 corrosion pattern of cement stone based on solid Calcium content[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4):191-198. [10] 熊钰丹, 席方柱. CO2对油井水泥腐蚀的研究进展[J]. 钻井液与完井液,2011,28(z1):69-71.XIONG Yudan, XI Fangzhu. Research progress of CO2 corrosion on oil well cement[J]. Drilling Fluid & Completion Fluid, 2011, 28(z1):69-71. [11] 冯福平, 刘子玉, 路大凯, 等. CO2对水泥石腐蚀机理及密封性的影响研究进展[J]. 硅酸盐学报,2018,46(2):247-255.FENG Fuping, LIU Ziyu, LU Dakai, et al. Review on CO2 effect on cement corrosion mechanism and cement sealing performance[J]. Journal of the Chinese Ceramic Society, 2018, 46(2):247-255. [12] 彭志刚, 张健, 冯茜, 等. 环境响应型聚合物对水泥石抗CO2腐蚀性能的影响[J]. 石油学报,2018,39(6):703-711.PENG Zhigang, ZHANG Jian, FENG Qian, et al. Effects of environmental responsive polymer on the anti-CO2 corrosion performance of set cement[J]. Acta Petrolei Sinica, 2018, 39(6):703-711. [13] WANG D, FANG Y F, ZHANG Y Y. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. Journal of CO2 Utilization, 2019, 34:149-162. doi: 10.1016/j.jcou.2019.06.005 [14] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic Calcium silicates: potential of utilizing low-lime Calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13):6173-6191. doi: 10.1007/s10853-016-9909-4 [15] IBÁÑEZ J, ARTÚS L, CUSCÓ R, et al. Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2007, 38(1):61-67. doi: 10.1002/jrs.1599 [16] PHUNG Q T, MAES N, JACQUES D, et al. Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport[J]. Construction and Building Materials, 2016, 114:333-351. doi: 10.1016/j.conbuildmat.2016.03.191 [17] 高强, 梅开元, 王德坤, 等. CCUS环境下水泥单矿C3S的CO2腐蚀动力学研究[J]. 硅酸盐通报,2022,41(8):2644-2653. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208006GAO Qiang, MEI Kaiyuan, WANG Dekun, et al. CO2 corrosion kinetics of C3S in cement single ore under CCUS environment[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8):2644-2653. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208006 [18] 刘新, 冯攀, 沈叙言, 等. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报,2021,35(9):9157-9167.LIU Xin, FENG Pan, SHEN Xuyan, et al. Advances in the understanding of cement hydrate — Calcium silicate hydrate ( C-S-H)[J]. Materials Review, 2021, 35(9):9157-9167. [19] 王佳, 张春梅, 张晔, 等. 表面接枝 C—S—H 的岩沥青对高温油井水泥石力学性能的影响[J]. 钻井液与完井液,2023,40(6):806-814.WANG Jia, ZHANG Chunmei, ZHANG Ye, et al. Effects of rock asphalt with surface grafted C—S—H on mechanical properties of set cement in high temperature wells[J]. Drilling Fluid & amp; Completion Fluid, 2023, 40(6):806-814. [20] 蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州: 广州大学, 2022.MENG Shaoqiang. Study on the effect of nanomaterials on cement hydration[D]. Guangzhou: Guangzhou University, 2022. [21] 倪修成, 程小伟, 黎俊吾, 等. 新型油井水泥物相组成调控及力学性能研究[J]. 硅酸盐通报,2021,40(8):2534-2545.NI Xiucheng, CHENG Xiaowei, LI Junwu, et al. Phase composition control and mechanical property of new oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8):2534-2545. -