留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2地质封存与利用环境下水泥单矿C2S的腐蚀速率

王熹颖

王熹颖. CO2地质封存与利用环境下水泥单矿C2S的腐蚀速率[J]. 钻井液与完井液,2024,41(5):646-653 doi: 10.12358/j.issn.1001-5620.2024.05.012
引用本文: 王熹颖. CO2地质封存与利用环境下水泥单矿C2S的腐蚀速率[J]. 钻井液与完井液,2024,41(5):646-653 doi: 10.12358/j.issn.1001-5620.2024.05.012
WANG Xiying.Study on corrosion rate of cement monomineralic C2S in CO2 geological sequestration environment[J]. Drilling Fluid & Completion Fluid,2024, 41(5):646-653 doi: 10.12358/j.issn.1001-5620.2024.05.012
Citation: WANG Xiying.Study on corrosion rate of cement monomineralic C2S in CO2 geological sequestration environment[J]. Drilling Fluid & Completion Fluid,2024, 41(5):646-653 doi: 10.12358/j.issn.1001-5620.2024.05.012

CO2地质封存与利用环境下水泥单矿C2S的腐蚀速率

doi: 10.12358/j.issn.1001-5620.2024.05.012
详细信息
    作者简介:

    王熹颖,工程师,从事天然气地质开发相关研究工作。电话 18504386916;E-mail:wangxy-jl@petrochina.com.cn

  • 中图分类号: TE982

Study on Corrosion Rate of Cement Monomineralic C2S in CO2 Geological Sequestration Environment

  • 摘要: 在CO2地质封存和利用过程中,固井水泥容易与井下的酸性介质CO2发生碳酸化反应,腐蚀固井水泥石造成水泥石力学性能大幅度衰退。针对水泥石单矿C2S在CO2地质封存和利用环境中腐蚀反应速率不清晰的问题,通过SEM、XRD以及TG的测试方法,定量分析C2S腐蚀产物的变化规律。根据腐蚀产物CaCO3的摩尔生成率和非稳态扩散渗透模型拟合得到腐蚀反应产物CaCO3的生成系数α。SEM实验结果表明,腐蚀反应后C2S水泥单矿颗粒的表面均有较大改变,生成了部分腐蚀产物CaCO3;XRD结果表明,单矿C2S腐蚀产物CaCO3的晶型主要有方解石和文石;TG测试结果表明,C2S水泥单矿随着腐蚀龄期的增加,腐蚀产物的量均明显增加。拟合结果表明,C2S腐蚀产物生成速率随着温度的升高而增大,90 ℃下CaCO3腐蚀产物的生成速率系数α最大为54.90。

     

  • 图  1  水泥单矿C2S未腐蚀与腐蚀后微观结构图(90 ℃龄期7 d)        

    图  2  不同腐蚀温度和龄期下C2S腐蚀试样的物相变化

    图  3  不同腐蚀条件下C2S腐蚀试样物相与晶体的相对结晶度变化(RCS和RCP)

    图  4  C2S试样在不同腐蚀温度及龄期下反应产物的DTA曲线与各组分含量

    图  5  水泥单矿C2S腐蚀产物CaCO3的摩尔生成率与腐蚀时间拟合结果  

    表  1  C2S试样在不同温度和龄期下CaCO3的摩尔生成率

    腐蚀龄期/d腐蚀温度/ ℃$ \bar {P} $/(mol/d)
    13021.91
    6034.37
    9045.93
    3307.66
    6016.79
    9016.60
    7304.41
    607.30
    907.87
    14303.54
    604.42
    903.94
    28302.03
    602.11
    902.10
    下载: 导出CSV

    表  2  水泥单矿C2S腐蚀产物CaCO3的摩尔生成率拟合结果

    样品 腐蚀温度/ ℃ α $ \beta $ R2
    C2S 30 24.40 −3.859 0.955
    60 40.59 −6.580 0.995
    90 54.90 −11.190 0.976
    下载: 导出CSV
  • [1] EVERS J. A roadmap to net zero: The International Energy Agency has presented a roadmap for the global energy sector to reach net-zero CO2 emissions by 2050. What contribution could nuclear make?[J]. Nuclear Engineering International, 2021, 66(803):216-217.
    [2] 刘琦, 赵莉, 马忠诚, 等. 用于CCUS地质封存的CO2响应型智能凝胶封窜体系[J]. 油田化学,2022,39(4):623-629.

    LIU Qi, ZHAO Li, MA Zhongcheng, et al. CO2 responsive smart gel sealants for CCUS geological storage[J]. Oilfield Chemistry, 2022, 39(4):623-629.
    [3] ZHANG J, WANG C N, PENG Z G, et al. Corrosion integrity of oil cement modified by environment responsive microspheres for CO2 geologic sequestration wells[J]. Cement and Concrete Research, 2021, 143:106397. doi: 10.1016/j.cemconres.2021.106397
    [4] 龚鹏, 程小伟, 武治强, 等. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报,2023,37(7):67-73.

    GONG Peng, CHENG Xiaowei, WU Zhiqiang, et al. Research on the effect of Calcium carbonate whiskers on the self-healing of cement stone cracks induced by CO2[J]. Materials Reports, 2023, 37(7):67-73.
    [5] 饶志华, 邓成辉, 马倩芸, 等. CCUS 井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液,2023,40(4):495-501.

    RAO Zhihua, DENG Chenghui, MA Qianyun, et al. Comparative study on effects of different crystallographic materials on selfhealing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & amp; Completion Fluid, 2023, 40(4):495-501.
    [6] 武治强, 武广瑷, 幸雪松. CO2 腐蚀-应力耦合下固井水泥环密封完整性[J]. 钻井液与完井液,2024,41(2):220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012

    WU Zhiqiang, WU Guang’ai, XING Xuesong. Sealing integrity of cement sheath under the condition of CO2 corrosion-stress coupling[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):220-230. doi: 10.12358/j.issn.1001-5620.2024.02.012
    [7] 张景富, 俞庆森, 徐明, 等. G级油井水泥的水化及硬化[J]. 硅酸盐学报,2002,30(2):167-171,177. doi: 10.3321/j.issn:0454-5648.2002.02.006

    ZHANG Jingfu, YU Qingsen, XU Ming, et al. Hydration and hardening of class G oilwell cemnet[J]. Journal of the Chinese Ceramic Society, 2002, 30(2):167-171,177. doi: 10.3321/j.issn:0454-5648.2002.02.006
    [8] 刘思楠, 张力为, 甘满光, 等. 地质封存环境CO2压力影响水泥碳化程度的试验研究[J]. 中国电机工程学报,2022,42(9):3126-3134.

    LIU Sinan, ZHANG Liwei, GAN Manguang, et al. Experimental study of the effect of CO2 pressure on the degree of cement carbonation under geologic CO2 storage environment[J]. Proceedings of the CSEE, 2022, 42(9):3126-3134.
    [9] 袁彬, 袁坤峰, 徐璧华, 等. 基于固体钙含量的CO2 腐蚀水泥石规律预测[J]. 西南石油大学学报(自然科学版),2021,43(4):191-198.

    YUAN Bin, YUAN Kunfeng, XU Bihua, et al. Prediction of CO2 corrosion pattern of cement stone based on solid Calcium content[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4):191-198.
    [10] 熊钰丹, 席方柱. CO2对油井水泥腐蚀的研究进展[J]. 钻井液与完井液,2011,28(z1):69-71.

    XIONG Yudan, XI Fangzhu. Research progress of CO2 corrosion on oil well cement[J]. Drilling Fluid & Completion Fluid, 2011, 28(z1):69-71.
    [11] 冯福平, 刘子玉, 路大凯, 等. CO2对水泥石腐蚀机理及密封性的影响研究进展[J]. 硅酸盐学报,2018,46(2):247-255.

    FENG Fuping, LIU Ziyu, LU Dakai, et al. Review on CO2 effect on cement corrosion mechanism and cement sealing performance[J]. Journal of the Chinese Ceramic Society, 2018, 46(2):247-255.
    [12] 彭志刚, 张健, 冯茜, 等. 环境响应型聚合物对水泥石抗CO2腐蚀性能的影响[J]. 石油学报,2018,39(6):703-711.

    PENG Zhigang, ZHANG Jian, FENG Qian, et al. Effects of environmental responsive polymer on the anti-CO2 corrosion performance of set cement[J]. Acta Petrolei Sinica, 2018, 39(6):703-711.
    [13] WANG D, FANG Y F, ZHANG Y Y. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. Journal of CO2 Utilization, 2019, 34:149-162. doi: 10.1016/j.jcou.2019.06.005
    [14] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic Calcium silicates: potential of utilizing low-lime Calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13):6173-6191. doi: 10.1007/s10853-016-9909-4
    [15] IBÁÑEZ J, ARTÚS L, CUSCÓ R, et al. Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2007, 38(1):61-67. doi: 10.1002/jrs.1599
    [16] PHUNG Q T, MAES N, JACQUES D, et al. Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport[J]. Construction and Building Materials, 2016, 114:333-351. doi: 10.1016/j.conbuildmat.2016.03.191
    [17] 高强, 梅开元, 王德坤, 等. CCUS环境下水泥单矿C3S的CO2腐蚀动力学研究[J]. 硅酸盐通报,2022,41(8):2644-2653. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208006

    GAO Qiang, MEI Kaiyuan, WANG Dekun, et al. CO2 corrosion kinetics of C3S in cement single ore under CCUS environment[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8):2644-2653. doi: 10.3969/j.issn.1001-1625.2022.8.gsytb202208006
    [18] 刘新, 冯攀, 沈叙言, 等. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报,2021,35(9):9157-9167.

    LIU Xin, FENG Pan, SHEN Xuyan, et al. Advances in the understanding of cement hydrate — Calcium silicate hydrate ( C-S-H)[J]. Materials Review, 2021, 35(9):9157-9167.
    [19] 王佳, 张春梅, 张晔, 等. 表面接枝 C—S—H 的岩沥青对高温油井水泥石力学性能的影响[J]. 钻井液与完井液,2023,40(6):806-814.

    WANG Jia, ZHANG Chunmei, ZHANG Ye, et al. Effects of rock asphalt with surface grafted C—S—H on mechanical properties of set cement in high temperature wells[J]. Drilling Fluid & amp; Completion Fluid, 2023, 40(6):806-814.
    [20] 蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州: 广州大学, 2022.

    MENG Shaoqiang. Study on the effect of nanomaterials on cement hydration[D]. Guangzhou: Guangzhou University, 2022.
    [21] 倪修成, 程小伟, 黎俊吾, 等. 新型油井水泥物相组成调控及力学性能研究[J]. 硅酸盐通报,2021,40(8):2534-2545.

    NI Xiucheng, CHENG Xiaowei, LI Junwu, et al. Phase composition control and mechanical property of new oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8):2534-2545.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  72
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-02
  • 修回日期:  2023-05-28
  • 刊出日期:  2024-11-07

目录

    /

    返回文章
    返回