Carboxyl Functionalized Carbon Nanotube and Its Effects on Set Cement
-
摘要: 随着非常规油气井开发的不断深入,复杂的地下环境对水泥石的各项力学性能指标提出更高的要求,因此,急需开发高性能的纳米材料用于改造水泥石性能。采用稀酸酸化工艺制备羧基功能化碳纳米管分散液,通过接触角、紫外-可见吸收光谱和沉降稳定性等测试对分散液的分散能力进行讨论,并对羧基功能化碳纳米管提高水泥石力学性能的效果进行了验证。研究结果表明,羧基功能化可使碳纳米管的粒径减小89.71%,并使疏水材料转变为亲水材料,同时,羧基功能化碳纳米管在水中的分散稳定性提升100%;0.005%加量的羧基功能化碳纳米管使水泥石的抗压强度提高16.05%,抗折强度提高25.82%,抗拉强度提高18.07%。Abstract: With the continual development of unconventional oil and gas, complex downhole conditions have presented higher requirements on the various mechanical properties of set cement for well integrity, and these requirements have urged the development of high performance nanomaterials for improving the performance of the set cement. In this study, a carboxyl functionalized carbon nanotube dispersion was developed through dilute-acid acidization process. The dispersibility of the dispersion was measured by means of contact-angle measurement, UV-visible absorption spectroscopy as well as settling stability measurement etc., and the effect of the carboxyl functionalized carbon nanotube on improving the mechanical properties of set cement was verified. The study shows that carboxyl functionalization reduces the diameters of the carbon nanotube particles by 89.71%, and can convert a hydrophobic material to hydrophilic one. Carboxyl functionalization also improves the dispersion stability of the carbon nanotube by 100%. A cement slurry treated with 0.005% carboxyl functionalized carbon nanotube has the compressive strength of the set cement increased by 16.05%, the flexural strength by 25.82%, and the tensile strength by 18.07%.
-
Key words:
- Carbon nanotube /
- Carboxyl /
- Set cement
-
表 1 水泥石力学性能比较
名称 配方 抗压
强度/
MPa抗折
强度/
MPa抗拉
强度/
MPa渗透
率/
mD水泥石 800 g G级水泥+32 g
DZJ-180T+320 g水35.27 7.28 4.87 0.0100 羧基碳纳
米管水
泥石800 g G级水泥+32 g
DZJ-180T+320 g水+
40 mg羧基碳纳米管40.93 9.16 5.75 0.0084 表 2 羧基碳纳米管水泥石力学性能随养护时间变化比较
t养护/d 抗压强度/MPa 抗折强度/MPa 弹性模量/GPa 1 27.60 5.22 7.2 2 40.93 9.16 8.3 3 42.43 9.38 8.2 5 46.20 9.59 8.3 7 48.05 9.67 8.3 -
[1] BURROWS L C, HAERI F, CVETIC P, et al. A literature review of CO2, natural gas, and water-based fluids for enhanced oil recovery in unconventional reservoirs[J]. Energy & Fuels, 2020, 34(5):5331-5380. [2] 袁光杰, 付利, 王元, 等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1-12.YUAN Guangjie, FU Li, WANG Yuan, et al. The Up-to-Date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1):1-12. [3] 付涌. 功能性纳米材料在化工领域的应用[J]. 冶金与材料,2023,43(11):121-123.FU Yong. Application of functional nanomaterials in chemical industry[J]. Metallurgy and materials, 2023, 43(11):121-123. [4] 孙德, 王平全, 李早元, 等. 纳米材料在页岩钻井工作液中的应用进展[J]. 当代化工研究,2023(19):5-7.SUN De, WANG Pingquan, LI Zaoyuan, et al. Application progress of nanomaterials in shale drilling fluid[J]. Modern Chemical Research, 2023(19):5-7. [5] 陈力力,郭建华,谢刚. 碳纳米管封堵剂在水基钻井液中的作用机理[J]. 钻井液与完井液,2022,39(1):29-35.CHEN Lili, GUO Jianhua, XIE Gang. Study on mechanisms of carbon nanotube as a nanosized plugging agent in water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):29-35 [6] 魏浩光. 纳米液硅防窜水泥浆体系性能研究及应用[J]. 科技和产业,2022,22(4):385-388.WEI Haoguang. Performance research and application of liquid nano-silica anti-channeling cement slurry system[J]. Science Technology and Industry, 2022, 22(4):385-388. [7] 魏浩光, 张鑫, 丁士东, 等. PEG对纳米硅水泥浆触变性改善的研究[J]. 钻井液与完井液,2018,35(4):82-86.WEI Haoguang, ZHANG Xin, DING Shidong, et al. Rheological improvement of nano-phase Silicon cement slurry with polyglycol[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):82-86. [8] HARRIS P J F. Carbon nanotube composites[J]. International Materials Reviews, 2004, 49(1):31-43. doi: 10.1179/095066004225010505 [9] EDER D. Carbon nanotube−inorganic hybrids[J]. Chemical Reviews, 2010, 110(3):1348-1385. doi: 10.1021/cr800433k [10] 丁会敏, 杨光, 唐诗洋, 等. 碳纳米管分散研究现状[J]. 黑龙江科学,2023,14(20):25-28.DING Huimin, YANG Guang, TANG Shiyang, et al. Research status of dispersion of Carbon nanotubes[J]. Heilongjiang Science, 2023, 14(20):25-28. [11] LEE A, BEAK S, LEE S, et al. Hydrophilic/hydrophobic characteristics on the Carbon nanotube buckypapers with various mechanical and chemical manufacture process[J]. Diamond and Related Materials, 2020, 110:108152. doi: 10.1016/j.diamond.2020.108152 [12] 李春, 朱大亮, 梁帅锋, 等. 碳纳米管在水泥基中的分散性研究现状及展望[J]. 山西建筑,2022,48(22):104-109.LI Chun, ZHU Daliang, LIANG Shuaifeng, et al. Review on dispersion of Carbon nanotubes in cement based materials[J]. Shanxi Architecture, 2022, 48(22):104-109. [13] SILVESTRO L, DOS SANTOS LIMA G T, RUVIARO A S, et al. Evaluation of different organosilanes on multi-walled Carbon nanotubes functionalization for application in cementitious composites[J]. Journal of Building Engineering, 2022, 51:104292. doi: 10.1016/j.jobe.2022.104292 [14] 冯宇思, 刘硕琼, 刘慧婷, 等. 碳纳米管改性水泥石力学性能研究[J]. 钻井液与完井液,2018,35(6):93-97.FENG Yusi, LIU Shuoqiong, LIU Huiting, et al. Study on mechanical performance of set cement modified with CNT[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):93-97. [15] 花蕾, 王刘芸. 早龄期CNTs增强水泥基复合材料的性能研究[J]. 硅酸盐通报,2019,38(4):1091-1095.HUA Lei, WANG Liuyun. Performance of cement-based composites reinforced by CNTs under the early age[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4):1091-1095. [16] LI G Y, WANG P M, ZHAO X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled Carbon nanotubes[J]. Carbon, 2005, 43(6):1239-1245. doi: 10.1016/j.carbon.2004.12.017 [17] HASSAN E A M, YANG L L, ELAGIB T H H, et al. Synergistic effect of Hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B Engineering, 2019, 171:70-77. doi: 10.1016/j.compositesb.2019.04.015 -