Development and Evaluation of a Temperature-Sensitive Deformable Fibrous Capsule Lost Circulation Material
-
摘要: 针对现有玻璃纤维、聚丙烯纤维、剑麻纤维、陶瓷纤维等纤维材料的尺寸过大及加量过大导致水泥浆混拌过程中混配困难和浆体增稠的难题,研发了具有形状记忆功能的温敏形变纤维胶囊。当温度低于形变响应温度时,纤维胶囊的粒径较小,在漏失通道内形成高密度颗粒填充;当温度达到形变响应温度后,纤维胶囊激活发生膨胀变形,高密度颗粒之间相互挤压充填,在漏失通道内高强度架桥堆积,进而封堵漏失层。该纤维胶囊可将6 mm的纤维封装在3 mm的胶囊中,从而提高纤维材料在堵漏水泥中的有效含量及尺寸,改善水泥浆封堵能力,降低工作过程中的漏失风险,保证固井质量。加入温敏形变纤维胶囊堵漏剂的水泥浆流动度均值为22 cm,初始稠度为25 Bc,与纯水泥浆相似,相比于直接添加纤维材料,水泥浆体流态明显改善,可泵性大幅度增强,同时水泥石抗压强度也大幅提高,堵漏剂加量为5%时水泥石7 d的抗压强度可达50 MPa,解决了纤维水泥浆混配困难和浆体增稠的难题,对保证固井质量具有一定的实际意义。Abstract: A temperature-sensitive deformable fibrous capsule with shape memory has been developed to address the difficulties in mixing cement slurries and the slurry thickening problem caused by the oversize and excessive dosage of the fibrous materials presently in use, such as glass fiber, polypropylene fiber, sisal fiber and ceramic fiber etc. When the ambient temperature is lower than the deformation-response temperature, the particle sizes of the fibrous capsules are relatively small, therefore it is easy for the capsule particles to form high density particle packing in passages through which cement slurries are lost. When the ambient temperature reaches the deformation-response temperature, the fibrous capsules are activated and begin to expand, causing the particles packed in high densities to squeeze each other and to form high strength bridging inside the passages. The losses of the cement slurries are thus effectively brought under control. The process with which the fibrous capsules are produced can encapsulate 6 mm fibers into a 3 mm capsule, thereby increasing the effective concentrations and sizes of the fibers in loss-control cement slurries, improving the plugging performance of the cement slurries, minimizing the risks of fluid losses and ensuring the job quality of well cementing. The average fluidity of a cement slurry treated with the temperature-sensitive deformable fibrous capsules is 22 cm, and the initial consistency of the cement slurry is 25 Bc, comparable to the consistency of the pure cement slurry. Compared with cement slurries directly treated with fibrous materials, the cement slurry treated with the temperature-sensitive deformable fibrous capsules has rheology and pumpability that are significantly improved and the compressive strength of the set cement is greatly increased. The 7 d compressive strength of a set cement containing 5% temperature-sensitive deformable fibrous capsules reaches 50 MPa. The development and application of the temperature-sensitive deformable fibrous capsules help solve the difficulties encountered in cement slurry mixing and the slurry thickening problem, and are of significance to the success of high-quality well cementing operation.
-
Key words:
- Shape memory material /
- Oil well cement /
- Lost circulation material
-
表 1 不同纤维加量下水泥浆的封堵实验评价结果
纤维 下灰时间及冷浆状态 60 ℃养护后浆体状态 承压能力 0.5%聚丙烯纤维(6 mm) 下灰19 s,浆体内有少量软团簇状物质 初稠35 Bc,60 ℃养护
后有三指宽较大包心浆体搅匀后测承压
能力,可达5 MPa
不漏失(逐步升压法)0.5%玻璃纤维(6 mm) 下灰15 s,浆极稀且均匀,看不到纤维 无包心 加压至0.2 MPa
全漏失、气窜1.5%玻璃纤维(6 mm) 低速搅拌基本不下灰,高速搅拌时发出强烈声响,持续数秒后突然浆体变稀,纤维全部消失不见,融入浆体中 无包心 加压至0.2 MPa
全漏失、气窜0.5%碳纤维(6 mm) 低速搅拌基本不下灰,高速搅拌后
浆体变稀,浆内看不到纤维无包心 加压至0.2 MPa
全漏失、气窜1%碳纤维(6 mm) 低速搅拌基本不下灰,高速搅拌后
浆体变稀,浆内看不到纤维无包心 加压至0.2 MPa
全漏失、气窜0.5%聚丙烯网络纤维
(19 mm剪成三段,每段约6 mm)下灰13 s,浆体内有少量
软团簇状物质中等包心,上提
一瞬间滑落加压至0.3 MPa
全漏失、气窜0.5%聚酯纤维(6 mm) 下灰13 s,浆体正常 三指宽中等包心 加压至0.3 MPa
全漏失、气窜1%玄武岩纤维(6 mm) 下灰12 s,浆体正常 无包心 加压至0.2 MPa
全漏失、气窜不加纤维 下灰10 s,浆体正常 初稠10 Bc,无包心 加压至0.2 MPa
全漏失,气窜表 2 含不同加量聚丙烯纤维的水泥浆的封堵性能评价结果
聚丙烯纤维/
%DRS-1S/
%下灰时间及冷浆状态 60 ℃养护后浆体状态 承压能力 2 0 下不去灰,冷浆极稠 无法进行实验 无法进行实验 1 0.3 下灰26 s,持续高速搅拌后
浆体内有团簇状纤维-水泥复合物冷浆极稠,无法进行实验 无法进行实验 1 0.7 下灰23 s,持续高速搅拌后
浆体内有团簇状物质巨大包心,无法使用 无法进行实验 0.5 0 下灰19 s,浆体内
有少量软团簇状物质常压稠化仪初稠35 Bc,
60 ℃养护后有三指宽较大包心浆体搅匀后测承压能力,可达
5 MPa不漏失(逐步升压法)0.3 0 下灰13 s,浆体基本正常 初稠20 Bc,60 ℃养护后
有三指宽较大包心浆体搅匀后测承压能力,可达
5 MPa不漏失(逐步升压法)0.3 0 下灰13 s,浆体基本正常 初稠20 Bc,60 ℃养护后
有三指宽较大包心直接快速加压,加至0.5 MPa正常,
加至1 MPa时突然全漏失,气窜0* 0 下灰10 s,浆体正常 初稠10 Bc,60 ℃
养护后无包心加压至0.2 MPa全漏失,气窜 注:水泥浆配方为:1200 g嘉华G级油井水泥+3.5%降失水剂DRF-6L+聚丙烯纤维+分散剂DRS-1S+40.5%水;*实验为对照实验。 -
[1] 艾道安. 防漏堵漏低密度水泥浆室内研究与应用[J]. 长江大学学报(自科版),2015,12(22):23-26.AI Daoan. Research and application of indoor research of low-density cement slurry for leakage prevention and plugging[J]. Journal of Yangtze University (Natural Science Edition), 2015, 12(22):23-26. [2] 高元, 桑来玉, 杨广国, 等. 胶乳纳米液硅高温防气窜水泥浆体系[J]. 钻井液与完井液,2016,33(3):67-72. doi: 10.3969/j.issn.1001-5620.2016.03.014GAO Yuan, SANG Laiyu, YANG Guangguo, et al. Cement slurry treated with latex Nano liquid silica anti-gas-migration agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):67-72. doi: 10.3969/j.issn.1001-5620.2016.03.014 [3] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638. doi: 10.11698/PED.2021.03.18SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638. doi: 10.11698/PED.2021.03.18 [4] EGOROVA E V, MINCHENKO Y S, DOLGOVA U V, et al. Study of dispersed-reinforced expanding plugging materials to improve the quality of well cementing[J]. IOP Conference Series: Earth and Environmental Science, 2021, 745:012019. doi: 10.1088/1755-1315/745/1/012019 [5] XI X, SHI Q L, JIANG S G, et al. Effects of graphene oxide on the mechanical and microscopic characteristics of cement-based plugging material for preventing spontaneous combustion of coal[J]. Energy & Fuels, 2020, 34(5):6346-6354. [6] SAMSYKIN A V, YARMUKHAMETOV I I, TROFIMOV V Y, et al. Improving the structural strength and mechanical properties of plugging material (Russian)[J]. Oil Industry Journal, 2019, 2019(12):115-117. [7] 贾丽莉, 田陆飞, 刘振, 等. 堵漏材料研究的进展[J]. 材料研究与应用,2011,5(1):14-16,38. doi: 10.3969/j.issn.1673-9981.2011.01.004JIA Lili, TIAN Lufei, LIU Zhen, et al. Research progress of lost circulation materials[J]. Materials Research and Application, 2011, 5(1):14-16,38. doi: 10.3969/j.issn.1673-9981.2011.01.004 [8] 黎凌, 李巍, 欧阳伟. 遇水快速膨胀胶凝堵漏技术在长宁页岩气区块的应用[J]. 钻井液与完井液,2019,36(2):181-188. doi: 10.3969/j.issn.1001-5620.2019.02.009LI Ling, LI Wei, OU YANG Wei. Application of a fast-swelling gel lost circulation material in shale gas drilling in block changning[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):181-188. doi: 10.3969/j.issn.1001-5620.2019.02.009 [9] 张坤,王磊磊,苏君,等. 温敏型凝胶堵漏剂的室内研究[J]. 钻井液与完井液,2020,37(6):753-756.ZHANG Kun, WANG Leilei, SU Jun, et al. Laboratory study on temperature sensitive gel lost circulation material[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):753-756 [10] 陆永伟. 固井水泥浆承压堵漏材料性能评价[J]. 中国石油和化工标准与质量,2022,42(21):1-2,5. doi: 10.3969/j.issn.1673-4076.2022.21.001LU Yongwei. Performance evaluation of pressurized plugging materials for cementing water mud[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(21):1-2,5. doi: 10.3969/j.issn.1673-4076.2022.21.001 [11] 刘仕康, 王学春. 油田固井堵漏技术研究进展[J]. 化学工程与装备,2022(8):79-80,74.LIU Shikang, WANG Xuechun. Research progress of oilfield cementing and plugging technology[J]. Fujian Chemical Industry, 2022(8):79-80,74. [12] 刘学鹏. 温敏堵漏水泥浆体系研究与应用[J]. 钻探工程,2022,49(2):110-116. doi: 10.12143/j.ztgc.2022.02.015LIU Xuepeng. Research and application of the temperature sensitive plugging cement slurry system[J]. Drilling Engineering, 2022, 49(2):110-116. doi: 10.12143/j.ztgc.2022.02.015 [13] 杨铁柱. 纤维堵漏固井技术研究[J]. 石化技术,2022,29(9):101-103. doi: 10.3969/j.issn.1006-0235.2022.09.034YANG Tiezhu. Study on fiber plugging and cementing technology[J]. Petrochemical Industry Technology, 2022, 29(9):101-103. doi: 10.3969/j.issn.1006-0235.2022.09.034 [14] ASLANI F, ZHANG Y F, MANNING D. Additive and alternative materials to cement for well plugging and abandonment: A state-of-the-art review[J]. Journal of Petroleum Science and Engineering, 2022, 215, Part B: 110728. [15] 汤龙皓, 王彦玲, 张传保, 等. 基于形状记忆聚合物的温敏型堵漏材料制备与评价[J]. 石油钻探技术,2022,50(5):70-75. doi: 10.11911/syztjs.2022023TANG Longhao, WANG Yanling, ZHANG Chuanbao, et al. Preparation and evaluation of thermosensitive plugging materials based on shape memory polymers[J]. Petroleum Drilling Techniques, 2022, 50(5):70-75. doi: 10.11911/syztjs.2022023 [16] CUI K X, JIANG G C, XIE C L, et al. A novel temperature-sensitive expandable lost circulation material based on shape memory epoxy foams to prevent losses in geothermal drilling[J]. Geothermics, 2021, 95:102145. doi: 10.1016/j.geothermics.2021.102145 [17] 王照辉, 崔凯潇, 蒋官澄, 等. 基于形状记忆环氧树脂聚合物的温敏可膨胀型堵漏剂研制及性能评价[J]. 钻井液与完井液,2020,37(4):412-420. doi: 10.3969/j.issn.1001-5620.2020.04.002WANG Zhaohui, CUI Kaixiao, JIANG Guancheng, et al. Development and performance evaluation of temperature-sensitive expandable plugging agent based on shape memory epoxy polymer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):412-420. doi: 10.3969/j.issn.1001-5620.2020.04.002 [18] 暴丹, 邱正松, 叶链, 等. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报,2020,41(1):106-115. doi: 10.7623/syxb202001010BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J]. Journal of Petroleum, 2020, 41(1):106-115. doi: 10.7623/syxb202001010 [19] 暴丹, 邱正松, 赵欣, 等. 基于温敏形状记忆特性的智能化堵漏材料研究展望[J]. 钻井液与完井液,2019,36(3):265-272. doi: 10.3969/j.issn.1001-5620.2019.03.001BAO Dan, QIU Zhengsong, ZHAO Xin, et al. Outlook on the research on intelligent LCM with temperature sensitive shape memory property[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):265-272. doi: 10.3969/j.issn.1001-5620.2019.03.001 [20] 陆长青, 高元, 杨广国, 等. 基于温敏形状记忆聚合物的堵漏水泥浆体系研究[J]. 钻采工艺,2023,46(3):141-146.LU Changqing , GAO Yuan , YANG Guangguo , et al. Study on a new type of plugging slurry based on thermo-responsive shape memory polymer[J]. Drilling & Production Technology, 2023, 46(3):141-146 [21] 王宝田, 杨倩云, 杨华. 形状记忆聚合物型温控膨胀堵漏剂SDP制备技术[J]. 钻井液与完井液,2022,39(1):41-45. doi: 10.12358/j.issn.1001-5620.2022.01.007WANG Baotian, YANG Qianyun, YANG Hua. Research on preparation technology of Temperature-Controlled expansion plugging agent based on shape memory polymer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):41-45. doi: 10.12358/j.issn.1001-5620.2022.01.007 [22] 冯杰,臧晓宇,邱正松,等. 温敏形状记忆堵漏材料实验研究[J]. 钻井液与完井液,2022,39(5):545-549.FENG Jie, ZANG Xiaoyu, QIU Zhengsong, et al. Characteristic study of thermosensitive shape memory lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):545-549 [23] 潘一, 徐明磊, 郭奇, 等. 钻井液智能堵漏材料研究进展[J]. 材料导报,2021,35(9):9223-9230. doi: 10.11896/cldb.20030053PAN Yi, XU Minglei, GUO Qi, et al. Research progress of smart plugging materials for drilling fluid[J]. Materials Review, 2021, 35(9):9223-9230. doi: 10.11896/cldb.20030053 [24] 王敏生, 光新军, 孔令军. 形状记忆聚合物在石油工程中的应用前景[J]. 石油钻探技术,2018,46(5):14-20. doi: 10.11911/syztjs.2018110WANG Minsheng, GUANG Xinjun, KONG Lingjun. Prospects of shape memory polymers in petroleum engineering[J]. Petroleum Drilling Techniques, 2018, 46(5):14-20. doi: 10.11911/syztjs.2018110 [25] 李洁,冯奇,张高峰,等. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理 CFD-DEM 模拟[J]. 钻井液与完井液,2022,39(6):721-729.LI Jie, FENG Qi, ZHANG Gaofeng, et al. CDF-DEM Simulation of the formation and failure mechanisms of plugging layers formed by plugging particles in fractures at mesoscale[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):721-729 -