Extra-High Temperature High Density Cement Slurry for Cementing Liners through Salt Formation in Well Qieshen-1
-
摘要: 且深1井是中石化西北油田分公司部署在塔里木盆地塔中地区的一口风险探井,四开中途完钻井深8745.00 m,井底静止温度196 ℃。针对且深1井四开固井面临的高温、高压、高盐、小间隙和全油基钻井液难驱替等诸多技术难题,围绕水泥浆体系的强度衰退、沉降稳定性、流变性能、稠化时间4个方面展开研究。通过引入富铝材料抑制强度衰退,优选不同粒径加重材料、硅粉调控沉降稳定性,配合耐超高温降失水剂、复配缓凝剂、聚醚-羧酸类分散剂综合调控水泥浆各项性能,设计出一套耐温200 ℃,密度高达2.3 g/cm3的超高温高密度抗盐水泥浆体系。该水泥浆体系性能稳定,API失水量为44 mL,流性指数n大于0.7,稠化时间线性可调,高温沉降稳定性为0.01 g/cm3,1 d和28 d的抗压强度分别为19.2 MPa和27.1 MPa,未见衰退迹象。结合驱油型加重前置液体系和其它固井技术措施,且深1井固井施工顺利。Abstract: The well Qieshen-1 is an exploration well deployed by Sinopec in block Tazhong in Tarim Basin. The well was drilled to a depth of 8,745.00 m in four intervals, with static bottom hole temperature being 196 ℃. Technical difficulties such as high temperature, high pressure, salt formation, narrow clearance between the wall of the hole and the casing string as well as difficulties in displacing the whole-oil based drilling fluid were encountered in cementing the casing string in the fourth interval. To deal with these difficulties, studies were conducted on the strength decay of the set cement and the settling stability, rheology and thickening time of the cement slurry. A saltwater resistant high density (Max. density 2.3 g/cm3) cement slurry that is stable at 230 ℃ was developed as a result of the study. Using aluminum-rich materials in the cement slurry, the decay of the strength of the set cement is inhibited. The settling stability of the cement slurry is improved by selecting weighting materials of different particle sizes, and silica fume. Other additives, such as high temperature filter loss reducers, compounded retarders and polyether-carboxylic acid dispersants were used to adjust the properties of the cement slurry to the required levels. Laboratory experiments show that the API filtration rate of the cement slurry is 44 mL, the flow index n is greater than 0.7, the thickening time is linearly adjustable, the high temperature settling stability is 0.01 g/cm3, and the 1 d and 28 d compressive strengths of the set cement are 192. MPa and 27.1 MPa respectively, with no signs of strength decay observed. With the use of oil displacing weighted prepad fluid and the adoption of other well cementing techniques, the well Queshen-1 was successfully cemented.
-
Key words:
- Ultra-high temperature /
- High density /
- Cement slurry /
- Prepad fluid /
- Liner cementing
-
表 1 我国高温高密度水泥浆体系应用情况
区块 井号 钻井液
类型ρ/
g·cm−3T实验/
℃井深/
m施工
年份官渡 官深1 高密度 2.82 95 3700.00 2013 中原油田 文72-421 高密度 2.81 68 2670.00 2014 塔里木 克深24-1 高密度 2.65 135 >6500 2018 塔里木 皮山北1 高密度 2.60 130 6929.00 2011 四川 元坝21 高密度 2.55 109 4600.00 2013 四川 新场12 高密度 2.55 116 4697.00 2011 塔里木 昆仑101 高密度 2.50 140 6985.00 2016 松辽科探 松科2 高温 1.88 200 5798.00 2017 共和干热岩 GH-01 高温 1.85 180 4002.88 2021 四川 川深1 高温 1.88 178 8420.00 2020 四川 马深1 高温 1.90 160 8418.00 2016 塔里木 大北303JS 高温高密度 2.38 162 8106.68 2022 河套盆地 河探1 高温高密度 2.60 160 6064.44 2023 塔里木 且深1 高温高密度 2.30 190 8745.00 2023 表 2 高密度水泥浆体系还原铁粉、硅粉粒径、降失水剂黏度与沉降稳定性的关系
编号 ρ/
g·cm−3还原铁
粉/目硅粉/
目SCFL-
W/%SCFL-180L/
%△ρ/
g·cm−31 2.2 300 120 15 0.45 2 500 120 15 难下灰 3 300 120 15 0.25 4 500 120 15 0.12 5 300 200 15 0.05 6 500 200 15 0.01 7 2.4 300 120 15 0.55 8 500 120 15 难下灰 9 300 120 15 0.05 10 500 120 15 0.02 11 300 200 15 0.00 12 500 200 15 难下灰 注:基础配方为:G级水泥(KG)+X%硅粉+40%铁矿粉(200目)+ Y%还原铁粉+15%降失水剂+10% SCR-4+1%消泡剂+M%自来水,其中硅粉和还原铁粉的用量根据实测密度进行调整。 表 3 复合缓凝剂配比、温度对稠化时间的影响
SCR-4/
%SCR-7/
%t稠化/min 180 ℃ 190 ℃ 200 ℃ 0 2 323 211 105 6 2 390 312 197 8 0 362 281 125 8 1 469 384 277 8 2 604 506 400 10 1 534 446 377 10 2 656 523 注:基础配方为:水泥(KG)+50%复合防衰退材料+40%铁矿粉+ 235%还原铁粉+15% SCFL-W +X% SCR-4+Y%SCR-7+1%消泡剂+Z%自来水。 表 4 棒状黏土、驱油冲洗液加量对冲洗效率的影响
序号 棒状黏土/% 驱油冲洗液/% 冲洗效率/% 1 3 10 85 2 4 10 87 3 5 10 92 4 6 10 92 5 5 5 88 6 5 10 92 7 5 15 99 8 5 20 99 表 5 且深1井水泥浆性能要求与实测性能
水泥浆 ρ/
g·cm−3流动度/
cmn FLAPI/
mLt稠化/min △ρ/
g·cm−3p/MPa 190 ℃ 200 ℃
2.35 g·cm−3190 ℃恒温20 min,
降至170 ℃1 d 7 d 28 d 性能要求 2.30 20~24 冷、热浆>0.6 ≤50 360~500 270~400 <0.03 >14.0 >14.0 实测性能 2.30 21 冷浆:0.60
热浆:0.6542 438 300 480 min,未稠 0.01 19.2 25.6 27.1 注:沉降稳定性的测试温度为190 ℃;抗压强度的测试温度为200 ℃。 -
[1] 张锦宏, 周爱照, 成海, 等. 中国石化石油工程技术新进展与展望[J]. 石油钻探技术,2023,51(4):149-158. doi: 10.11911/syztjs.2023021ZHANG Jinhong, ZHOU Aizhao, CHENG Hai, et al. New progress and prospects for Sinopec's petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2023, 51(4):149-158. doi: 10.11911/syztjs.2023021 [2] 严思明, 严圣东, 吴亚楠, 等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺,2018,40(2):174-178.YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2):174-178. [3] 姚勇, 尹宗国, 焦建芳等. 官深1井超高密度水泥浆固井技术[J]. 石油钻探技术,2013,41(01):118-122. doi: 10.3969/j.issn.1001-0890.2013.01.023YAO Yong, YIN Zongguo, JIAO Jianfang, et al. Cementing with Ultra-High Density Slurry in Well Guanshen-1[J]. Petroleum Drilling Techniques, 2013, 41(01):118-122. doi: 10.3969/j.issn.1001-0890.2013.01.023 [4] 李韶利, 宋韶光. 松科2井超高温水泥浆固井技术[J]. 钻井液与完井液,2018,35(2):92-97. doi: 10.3969/j.issn.1001-5620.2018.02.015LI Shaoli, SONG Shaoguang. Cementing technology for ultra-high temperature well Songke-2[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):92-97. doi: 10.3969/j.issn.1001-5620.2018.02.015 [5] 姚晓, 葛莊, 汪晓静, 等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17-23. doi: 10.11911/syztjs.2018008YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23. doi: 10.11911/syztjs.2018008 [6] 罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术,2019,47(4):17-21. doi: 10.11911/syztjs.2019094LUO Han, HE Shiming, LUO Deming. Ultra-High Temperature and High Pressure Liner Cementing Technology in Well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4):17-21. doi: 10.11911/syztjs.2019094 [7] 刘湘华. 油井水泥浆高温悬浮稳定剂的开发及性能研究[J]. 钻井液与完井液,2019,36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014LIU Xianghua. Development of and study on a high temperature suspension stabilizer for oil well cement slurries[J]. DrillingFluid & Completion Fluid, 2019, 36(5):605-609. doi: 10.3969/j.issn.1001-5620.2019.05.014 [8] 于永金, 张航, 夏修建, 等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液,2022,39(3):352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014YU Yongjin, ZHANG Hang, XIA Xiujian, et a1. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. DrillingFluid & Completion Fluid, 2022, 39(3):352-358. doi: 10.12358/j.issn.1001-5620.2022.03.014 [9] XIA X J, FENG Y K, GUO J T, et a1. Zwitterionic Copolymer for Controlling Fluid Loss in Oilwell Cementing: Preparation, Characterization, and Working Mechanism[J]. Polymer Engineering and Science, 57, 2017, 78-88. [10] 于永金, 薛毓铖, 夏修建, 等. 一种抗240 ℃超高温固井缓凝剂的研发与评价[J]. 天然气工业,2023,43(3):107-112.YU Yongjin, XUE Yucheng, XIA Xiujian, et al. Research & development and evaluation of a cementing retarder resistant to 240 ℃ ultra-high temperature[J]. Natural Gas Industry, 2023, 43(3):107-112. [11] XIA X J, GUO J T, CHEN D, et al. Hydrophobic associated copolymer as a wide temperature range synthetic cement retarder and its effect on cement hydration[J]. Journal of Applied Polymer Science, 2017, 134(35):45242. doi: 10.1002/app.45242 [12] TIAN H W, KONG X M, MIAO X, et al. A new insight into the working mechanism of PCE emphasizing the interaction between PCE and Ca2+ in fresh cement paste[J]. Construction and Building Materials, 2021, 275:122133. doi: 10.1016/j.conbuildmat.2020.122133 [13] 涂思琦, 谢飞燕, 敖康伟, 等. 一种适用于长宁页岩气井的高效洗油隔离液[J]. 钻井液与完井液,2022,39(1):82-86. doi: 10.12358/j.issn.1001-5620.2022.01.014TU Siqi, XIE Feiyan, AO Kangwei, et a1. A high efficiency oil wash spacer for shale gas wells in Changning oilfield[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):82-86. doi: 10.12358/j.issn.1001-5620.2022.01.014 [14] 李小林, 李剑华, 杨红滨, 等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013LI Xiaolin, LI Jianhua, YANG Hongbin, et a1. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81. doi: 10.12358/j.issn.1001-5620.2022.01.013 -