Lost Circulation Materials for Controlling Mud Losses while Drilling with RSS
-
摘要: 旋转导向仪器常被部分随钻堵漏剂堵塞筛网,造成井下仪器信号传递中断、井眼轨迹偏移、钻井液循环受阻等问题,且常用随钻堵漏材料易引起钻井液黏度大幅上涨,造成内耗大、滤饼厚等系列问题。因此要求随钻堵漏剂兼顾“可通过旋导”与“强封堵”性能且对钻井液黏度影响较小。以抗温植物纤维为原料,通过粉碎、筛析及疏水改性等步骤研发了一种随钻堵漏纤维(纤维1-1),依据行业标准评价其基本性能,并建立了一种随钻堵漏剂过旋导性能的评价方法。结果表明:纤维1-1基本性能均达到行业标准,其中,表观黏度增长率为10%,封闭滤失量为26 mL;加入纤维后钻井液循环30 min,压力增幅E<5%,具有良好的过旋导能力;在150 ℃、6 MPa实验条件下,加入3%纤维1-1的水基和油基钻井液体系能够封堵20~40目砂床,累计漏失量分别为4 mL和8 mL。最后,利用Zeta电位测试、微观形貌观察分析了纤维过旋导和堵漏机理。Abstract: In drilling operation the rotary steering system (RSS) is easy to be blocked by the lost circulation materials (LCMs), causing problems such as interruption of downhole instrument signal transmission, deviation of wellbore trajectory as well as blocking of mud circulation. Moreover, addition of conventional LCMs into a mud is easy to cause the mud viscosity to increase remarkably, which in turn results in problems such as high pressure loss along the flow line and thick mud cakes etc. It is thus required that the LCMs shall have the properties of “being able to pass through the RSS”, “high plugging capacity” and “low impact on mud viscosity”. To achieve this object, a lost circulation control fiber named Fiber-1-1 has been developed with a thermally stable plant fiber, a raw material which is shredded, screeded and hydrophobically modified to produce the final product. The performance of the Fiber-1-1 was evaluated in accordance with the relevant industrial standard, and a method of evaluating its ability to pass through the RSS during drilling was established. The evaluation results show that the performance of the Fiber-1-1 has reached the requirements of the industrial standard; it causes the apparent viscosity of a drilling fluid to increase by 10%, a lost circulation slurry containing Fiber-1-1 has filtration rate of 26 mL; after circulating for 30 min, a drilling fluid treated with the Fiber-1-1 causes pump pressure to increase by less than 5%, indicating that the Fiber-1-1 can smoothly pass through RSS. An oil-based drilling fluid and a water-based drilling fluid, each of which is treated with 3% Fiber-1-1, can plug the sand beds of 20-40 meshes under experiment conditions of 150 ℃ and 5 MPa, with accumulated mud losses of 4 mL and 8 mL, respectively. And in the final part of the paper, how the Fiber-1-1 passes through RSS and how it cures mud losses are analyzed with Zeta-potential measurement and through micromorphology observation.
-
表 1 纤维改性前后的基本性能
项目 筛余量/%
(0.28 mm)水分/
%灼烧残渣/
%AV增长率/
%FL封闭/
mL行业标准 ≤10.0 ≤8.0 ≤7.0 ≤20.0 ≤30 纤维1 0 2 4.7 20.7 31 纤维1-1 0 4.5 4 10 26 表 2 随钻堵漏纤维在基浆和凝胶中的堵漏评价所用配方
配方 具体配方 累计漏失量/mL 1#(空白) 基浆 全失 2# 基浆+4%纤维1 76.0 3# 基浆+4%纤维1-1 59.0 4# 基浆+4%SMP-LCM
(20~30目凝胶颗粒)71.0 5# 基浆+2%1-1+2%SMP-LCM
(20~30目凝胶颗粒)53.4 6#(空白) 4%聚丙烯酰胺溶液 全失 7# 4%聚丙烯酰胺溶液+4%纤维1-1 68.4 注:实验温度150 ℃、40~60目砂床,承压6 MPa。 表 3 不同加量纤维1-1在水基钻井液中的性能
纤维1-1/
%条件 PV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sGel/
Pa/Pa累计漏
失量/mL0 老化前 48 14.5 0.30 1.5/6.5 老化后 46 14.5 0.32 1.5/2.0 22.0 1 老化前 65 17.5 0.27 2.0/7.5 老化后 61 19.0 0.31 1.5/4.0 12.2 2 老化前 73 21.0 0.29 1.0/8.5 老化后 63 17.0 0.27 2.0/4.0 6.0 3 老化前 78 17.0 0.22 2.5/6.0 老化后 68 17.0 0.25 2.0/4.0 4.0 注:老化条件为150 ℃、16 h,20~40目砂床,承压为6 MPa。 表 4 不同加量纤维1-1在油基钻井液中的性能(150 ℃)
纤维
1-1/%条件 ES/
VPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sGel/
Pa/Pa累计漏
失量/mL0 老化前 632 29 3.5 0.12 3.0/5.0 老化后 763 34 5.5 0.16 2.5/12.5 38.0 1 老化前 624 32 7.0 0.22 3.0/5.0 老化后 516 33 5.0 0.15 3.5/6.0 15.0 2 老化前 669 41 9.5 0.23 4.0/6.5 老化后 571 35 5.5 0.16 3.5/5.0 10.0 3 老化前 510 48 7.5 0.16 3.5/5.0 老化后 617 42 6.0 0.14 2.5/4.5 8.0 -
[1] 王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源,2014,19(1):39-48. doi: 10.3969/j.issn.1673-579X.2014.01.007WANG Zhonghua. The status and development direction of plugging technology for complex formation lost circulation[J]. Sino-global Energy, 2014, 19(1):39-48. doi: 10.3969/j.issn.1673-579X.2014.01.007 [2] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638. doi: 10.11698/PED.2021.03.18SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638. doi: 10.11698/PED.2021.03.18 [3] 高书阳, 汤志川, 宋碧涛, 等. 川西断缝体储层封堵固壁钻井液技术[J]. 钻井液与完井液,2023,40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002GAO Shuyang, TANG Zhichuan, SONG Bitao, et al. Drilling fluid technology for plugging and strengthening the borehole wall of wells penetrating the faulted fractured reservoirs in West Sichuan[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002 [4] 李洁, 冯奇, 张高峰, 等. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理CFD-DEM 模拟[J]. 钻井液与完井液,2022,39(6):721-729.LI Jie, FENG Qi, ZHANG Gaofeng, et al. CDF-DEM simulation of the formation and failure mechanisms of plugging layers formed by plugging particles in fractures at mesoscale[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):721-729. [5] 方俊伟, 贾晓斌, 游利军, 等. 深层断溶体油气藏钻完井储层保护技术挑战与对策[J]. 断块油气田,2024,31(1):160-167.FANG Junwei, JIA Xiaobin, YOU Lijun, et al. Challenges and countermeasures for reservoir protection in deep fault-karst reservoirs during drilling and completion[J]. Fault-Block Oil and Gas Field, 2024, 31(1):160-167. [6] 王业众, 康毅力, 游利军, 等. 裂缝性储层漏失机理及控制技术进展[J]. 钻井液与完井液,2007,24(4):74-77. doi: 10.3969/j.issn.1001-5620.2007.04.023WANG Yezhong, KANG Yili, YOU Lijun, et al. Progresses in mechanism study and control: mud losses to fractured reservoirs[J]. Drilling Fluid & Completion Fluid, 2007, 24(4):74-77. doi: 10.3969/j.issn.1001-5620.2007.04.023 [7] 张斌, 黄进军, 李家学. 随钻防漏堵漏技术的研究与应用[J]. 重庆科技学院学报(自然科学版),2010,12(5):70-71,75.ZHANG Bin, HUANG Jinjun, LI Jiaxue. Research and application of mud losses prevention and control technology while drilling[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2010, 12(5):70-71,75. [8] 张鹏. 钻井液堵漏材料与防漏堵漏技术[J]. 中国石油和化工标准与质量,2023,43(5):164-166.ZHANG Peng. Research on drilling fluid plugging materials and leak prevention plugging technology[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(5):164-166. [9] DENG S, HUANG Y H, HU X H, et al. Nano-Film-Forming plugging drilling fluid and bridging Cross-Linking plugging agent are used to strengthen wellbores in complex formations[J]. ACS Omega, 2022, 7(26):22804-22810. doi: 10.1021/acsomega.2c02432 [10] 李祖光, 翟应虎, 史海民, 等. 无渗透桥堵技术在长岭深层气井完井中的应用[J]. 中国石油大学学报(自然科学版),2009,33(4):81-84.LI Zuguang, ZHAI Yinghu, SHI Haimin, et al. Application of non-filtration and bridge blinding technology to deep gas well completion in Changling region[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(4):81-84. [11] YANG C, FENG W, ZHOU F J. Formation of temporary plugging in acid-etched fracture with degradable diverters[J]. Journal of Petroleum Science and Engineering, 2020, 194:107535. doi: 10.1016/j.petrol.2020.107535 [12] 周生伟, 孙平贺, 苏卫锋, 等. 玄武岩纤维堵漏体系在高海拔非开挖钻进中的应用研究[J]. 钻探工程,2022,49(3):139-145. doi: 10.12143/j.ztgc.2022.03.018ZHOU Shengwei, SUN Pinghe, SU Weifeng, et al. Use of basalt fiber drilling fluid in trenchless works at high altitudes[J]. Drilling Engineering, 2022, 49(3):139-145. doi: 10.12143/j.ztgc.2022.03.018 [13] 戴立瑶. 高吸油树脂随钻堵漏剂研制与作用机理研究[D]. 青岛: 中国石油大学(华东), 2021.DAI Liyao. Research on development and action mechanism of high oil absorbent resin follow-drilling plugging agent[D]. Qingdao: China University of Petroleum(East China), 2021. [14] BAI Y R, DAI L Y, SUN J S, et al. Plugging performance and mechanism of an oil-absorbing gel for lost circulation control while drilling in fractured formations[J]. Petroleum Science, 2022, 19(6):2941-2958. doi: 10.1016/j.petsci.2022.08.004 [15] 刘书杰, 刘和兴, 王成文, 等. 超深水裂缝储层自降解随钻堵漏剂性能研究[J]. 中国海上油气,2022,34(2):107-115. doi: 10.11935/j.issn.1673-1506.2022.02.013LIU Shujie, LIU Hexing, WANG Chengwen, et al. Study on properties of self-degrading lost circulation agent while drilling in ultra-deepwater fractured reservoir[J]. China Offshore Oil and Gas, 2022, 34(2):107-115. doi: 10.11935/j.issn.1673-1506.2022.02.013 [16] LI D Q, PANG S C, XUAN Y, et al. Nano-Grafted acrylamide copolymer as an anti-temperature and anti-calcium fluid loss agent for Water-Based drilling fluids[J]. Energy and Fuels, 2023, 37(10):7213-7220. doi: 10.1021/acs.energyfuels.3c00919 [17] 周志世, 张宁, 张欢庆, 等. FCL工程纤维在碳酸盐岩裂缝性漏失堵漏中的应用[J]. 钻井液与完井液,2012,29(6):49-50,53. doi: 10.3969/j.issn.1001-5620.2012.06.015ZHOU Zhishi, ZHANG Ning, ZHANG Huanqing, et al. Engineering fiber FCL used for mud loss control in fractured carbonatite formation[J]. Drilling Fluid & Completion Fluid, 2012, 29(6):49-50,53. doi: 10.3969/j.issn.1001-5620.2012.06.015 [18] 陈家旭, 李兆丰, 邱正松, 等. 高酸溶纤维堵漏剂的实验研究[J]. 钻井液与完井液,2018,35(5):41-45. doi: 10.3969/j.issn.1001-5620.2018.05.008CHEN Jiaxu, LI Zhaofeng, QIU Zhengsong, et al. Study on highly acid soluble fibrous lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):41-45. doi: 10.3969/j.issn.1001-5620.2018.05.008 [19] 李传武, 兰凯, 杜小松, 等. 川南页岩气水平井钻井技术难点与对策[J]. 石油钻探技术,2020,48(3):16-21. doi: 10.11911/syztjs.2020055LI Chuanwu, LAN Kai, DU Xiaosong, et al. Difficulties and countermeasures in horizontal well drilling for shale gas in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3):16-21. doi: 10.11911/syztjs.2020055 [20] 石崇东, 王万庆, 史配铭, 等. 盐池区块深层页岩气水平井钻井关键技术研究[J]. 石油钻探技术,2021,49(6):23-28. doi: 10.11911/syztjs.2021007SHI Chongdong, WANG Wanqing, SHI Peiming, et al. Research on key drilling technology for horizontal wells in the deep shale gas reservoirs in Yanchi block[J]. Petroleum Drilling Techniques, 2021, 49(6):23-28. doi: 10.11911/syztjs.2021007 [21] 刘蓉蓉. 基于Fenton反应的植物纤维改性与应用研究[D]. 天津: 天津科技大学, 2020.LIU Rongrong. Modification of plant fiber and its application based on Fenton reaction[D]. Tianjin: Tianjin University of Science & Technology, 2020. [22] 韩永良, 李贺, 严小育, 等. 木桨纤维溶解过程分析及溶液表观粘度测试[J]. 山东纺织科技,2016,57(6):28-31. doi: 10.3969/j.issn.1009-3028.2016.06.009HAN Yongliang, LI He, YAN Xiaoyu, et al. Analysis of wood pulp fiber dissolution process and testing apparent viscosity of the solution[J]. Shandong Textile Science & Technology, 2016, 57(6):28-31. doi: 10.3969/j.issn.1009-3028.2016.06.009 [23] 董洪栋. 松科2井抗高温随钻堵漏材料优选及封堵效果评价[D]. 成都: 成都理工大学, 2017.DONG Hongdong. Selection of high temperature resistant plugging material and its plugging effect evaluation for SK2[D]. Chengdu: Chengdu University of Technology, 2017. [24] 刘继云, 杨学莉, 刘莹莹, 等. 表面改性核桃壳对聚乳酸/核桃壳粉体复合材料性能的影响[J]. 中国塑料,2014,28(3):40-45.LIU Jiyun, YANG Xueli, LIU Yingying, et al. Effect of surface modification of walnut shell on properties of poly (lactic acid)/walnut shell powder composites[J]. China Plastics, 2014, 28(3):40-45. [25] Q/SY 17096-2016. 钻井液用随钻堵漏剂——改性植物纤维[S]. 北京: 石油工业出版社, 2016.Q/SY 17096-2016. Plugging agents while drilling used in drilling fluids—Modifed vegetable fibres[S]. Beijing: Petroleum Industry Press, 2016. -