留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转导向仪器用随钻堵漏剂

贾永红 郭友 张蔚 叶安臣 郭春萍 贺垠博

贾永红,郭友,张蔚,等. 旋转导向仪器用随钻堵漏剂[J]. 钻井液与完井液,2024,41(5):609-616 doi: 10.12358/j.issn.1001-5620.2024.05.007
引用本文: 贾永红,郭友,张蔚,等. 旋转导向仪器用随钻堵漏剂[J]. 钻井液与完井液,2024,41(5):609-616 doi: 10.12358/j.issn.1001-5620.2024.05.007
JIA Yonghong, GUO You, ZHANG Wei, et al.Lost circulation materials for controlling mud losses while drilling with rss[J]. Drilling Fluid & Completion Fluid,2024, 41(5):609-616 doi: 10.12358/j.issn.1001-5620.2024.05.007
Citation: JIA Yonghong, GUO You, ZHANG Wei, et al.Lost circulation materials for controlling mud losses while drilling with rss[J]. Drilling Fluid & Completion Fluid,2024, 41(5):609-616 doi: 10.12358/j.issn.1001-5620.2024.05.007

旋转导向仪器用随钻堵漏剂

doi: 10.12358/j.issn.1001-5620.2024.05.007
基金项目: 国家自然科学基金重点支持项目“深海深井钻井液漏失机理与防治方法研究”(U23B2082);国家自然科学基金重大项目“井筒工作液与天然气水合物储层作用机理和调控方法”(51991361)。
详细信息
    作者简介:

    贾永红,高级工程师,1979年生,2003年毕业于西南石油大学应用化学专业,现在主要从事钻井液与完井液的研究工作。E-mail:jiayh2006@cnpc.com.cn

    通讯作者:

    贺垠博,E-mail:heyb@cup.edu.cn

  • 中图分类号: TE282

Lost Circulation Materials for Controlling Mud Losses while Drilling with RSS

  • 摘要: 旋转导向仪器常被部分随钻堵漏剂堵塞筛网,造成井下仪器信号传递中断、井眼轨迹偏移、钻井液循环受阻等问题,且常用随钻堵漏材料易引起钻井液黏度大幅上涨,造成内耗大、滤饼厚等系列问题。因此要求随钻堵漏剂兼顾“可通过旋导”与“强封堵”性能且对钻井液黏度影响较小。以抗温植物纤维为原料,通过粉碎、筛析及疏水改性等步骤研发了一种随钻堵漏纤维(纤维1-1),依据行业标准评价其基本性能,并建立了一种随钻堵漏剂过旋导性能的评价方法。结果表明:纤维1-1基本性能均达到行业标准,其中,表观黏度增长率为10%,封闭滤失量为26 mL;加入纤维后钻井液循环30 min,压力增幅E<5%,具有良好的过旋导能力;在150 ℃、6 MPa实验条件下,加入3%纤维1-1的水基和油基钻井液体系能够封堵20~40目砂床,累计漏失量分别为4 mL和8 mL。最后,利用Zeta电位测试、微观形貌观察分析了纤维过旋导和堵漏机理。

     

  • 图  1  纤维1-1的改性过程机理图及改性前后实物图

    图  2  纤维改性前后红外光谱图

    图  3  纤维改性前后表面形态(左)和能谱分析(右)

    图  4  水在纤维表面润湿性测试

    图  5  压力传递装置及相关配件(左)、压力传递曲线示意图(右)

    图  6  纤维在不同液体中的压力传递曲线

    图  7  zeta电位测试结果(左一)和纤维在水中和基浆中微观形貌观察(右二和右一)

    图  8  水基体系加纤维前后堵漏效果图

    图  9  油基体系加纤维前后堵漏效果图

    图  10  随钻堵漏纤维封堵后砂床(左)及微观形貌(右)

    表  1  纤维改性前后的基本性能

    项目 筛余量/%
    (0.28 mm)
    水分/
    %
    灼烧残渣/
    %
    AV增长率/
    %
    FL封闭/
    mL
    行业标准 ≤10.0 ≤8.0 ≤7.0 ≤20.0 ≤30
    纤维1 0 2 4.7 20.7 31
    纤维1-1 0 4.5 4 10 26
    下载: 导出CSV

    表  2  随钻堵漏纤维在基浆和凝胶中的堵漏评价所用配方

    配方具体配方累计漏失量/mL
    1#(空白)基浆全失
    2#基浆+4%纤维176.0
    3#基浆+4%纤维1-159.0
    4#基浆+4%SMP-LCM
    (20~30目凝胶颗粒)
    71.0
    5#基浆+2%1-1+2%SMP-LCM
    (20~30目凝胶颗粒)
    53.4
    6#(空白)4%聚丙烯酰胺溶液全失
    7#4%聚丙烯酰胺溶液+4%纤维1-168.4
     注:实验温度150 ℃、40~60目砂床,承压6 MPa。
    下载: 导出CSV

    表  3  不同加量纤维1-1在水基钻井液中的性能

    纤维1-1/
    %
    条件 PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    Gel/
    Pa/Pa
    累计漏
    失量/mL
    0 老化前 48 14.5 0.30 1.5/6.5
    老化后 46 14.5 0.32 1.5/2.0 22.0
    1 老化前 65 17.5 0.27 2.0/7.5
    老化后 61 19.0 0.31 1.5/4.0 12.2
    2 老化前 73 21.0 0.29 1.0/8.5
    老化后 63 17.0 0.27 2.0/4.0 6.0
    3 老化前 78 17.0 0.22 2.5/6.0
    老化后 68 17.0 0.25 2.0/4.0 4.0
     注:老化条件为150 ℃、16 h,20~40目砂床,承压为6 MPa。
    下载: 导出CSV

    表  4  不同加量纤维1-1在油基钻井液中的性能(150 ℃)

    纤维
    1-1/%
    条件 ES/
    V
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    Gel/
    Pa/Pa
    累计漏
    失量/mL
    0 老化前 632 29 3.5 0.12 3.0/5.0
    老化后 763 34 5.5 0.16 2.5/12.5 38.0
    1 老化前 624 32 7.0 0.22 3.0/5.0
    老化后 516 33 5.0 0.15 3.5/6.0 15.0
    2 老化前 669 41 9.5 0.23 4.0/6.5
    老化后 571 35 5.5 0.16 3.5/5.0 10.0
    3 老化前 510 48 7.5 0.16 3.5/5.0
    老化后 617 42 6.0 0.14 2.5/4.5 8.0
    下载: 导出CSV
  • [1] 王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源,2014,19(1):39-48. doi: 10.3969/j.issn.1673-579X.2014.01.007

    WANG Zhonghua. The status and development direction of plugging technology for complex formation lost circulation[J]. Sino-global Energy, 2014, 19(1):39-48. doi: 10.3969/j.issn.1673-579X.2014.01.007
    [2] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638. doi: 10.11698/PED.2021.03.18

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638. doi: 10.11698/PED.2021.03.18
    [3] 高书阳, 汤志川, 宋碧涛, 等. 川西断缝体储层封堵固壁钻井液技术[J]. 钻井液与完井液,2023,40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002

    GAO Shuyang, TANG Zhichuan, SONG Bitao, et al. Drilling fluid technology for plugging and strengthening the borehole wall of wells penetrating the faulted fractured reservoirs in West Sichuan[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002
    [4] 李洁, 冯奇, 张高峰, 等. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理CFD-DEM 模拟[J]. 钻井液与完井液,2022,39(6):721-729.

    LI Jie, FENG Qi, ZHANG Gaofeng, et al. CDF-DEM simulation of the formation and failure mechanisms of plugging layers formed by plugging particles in fractures at mesoscale[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):721-729.
    [5] 方俊伟, 贾晓斌, 游利军, 等. 深层断溶体油气藏钻完井储层保护技术挑战与对策[J]. 断块油气田,2024,31(1):160-167.

    FANG Junwei, JIA Xiaobin, YOU Lijun, et al. Challenges and countermeasures for reservoir protection in deep fault-karst reservoirs during drilling and completion[J]. Fault-Block Oil and Gas Field, 2024, 31(1):160-167.
    [6] 王业众, 康毅力, 游利军, 等. 裂缝性储层漏失机理及控制技术进展[J]. 钻井液与完井液,2007,24(4):74-77. doi: 10.3969/j.issn.1001-5620.2007.04.023

    WANG Yezhong, KANG Yili, YOU Lijun, et al. Progresses in mechanism study and control: mud losses to fractured reservoirs[J]. Drilling Fluid & Completion Fluid, 2007, 24(4):74-77. doi: 10.3969/j.issn.1001-5620.2007.04.023
    [7] 张斌, 黄进军, 李家学. 随钻防漏堵漏技术的研究与应用[J]. 重庆科技学院学报(自然科学版),2010,12(5):70-71,75.

    ZHANG Bin, HUANG Jinjun, LI Jiaxue. Research and application of mud losses prevention and control technology while drilling[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2010, 12(5):70-71,75.
    [8] 张鹏. 钻井液堵漏材料与防漏堵漏技术[J]. 中国石油和化工标准与质量,2023,43(5):164-166.

    ZHANG Peng. Research on drilling fluid plugging materials and leak prevention plugging technology[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(5):164-166.
    [9] DENG S, HUANG Y H, HU X H, et al. Nano-Film-Forming plugging drilling fluid and bridging Cross-Linking plugging agent are used to strengthen wellbores in complex formations[J]. ACS Omega, 2022, 7(26):22804-22810. doi: 10.1021/acsomega.2c02432
    [10] 李祖光, 翟应虎, 史海民, 等. 无渗透桥堵技术在长岭深层气井完井中的应用[J]. 中国石油大学学报(自然科学版),2009,33(4):81-84.

    LI Zuguang, ZHAI Yinghu, SHI Haimin, et al. Application of non-filtration and bridge blinding technology to deep gas well completion in Changling region[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(4):81-84.
    [11] YANG C, FENG W, ZHOU F J. Formation of temporary plugging in acid-etched fracture with degradable diverters[J]. Journal of Petroleum Science and Engineering, 2020, 194:107535. doi: 10.1016/j.petrol.2020.107535
    [12] 周生伟, 孙平贺, 苏卫锋, 等. 玄武岩纤维堵漏体系在高海拔非开挖钻进中的应用研究[J]. 钻探工程,2022,49(3):139-145. doi: 10.12143/j.ztgc.2022.03.018

    ZHOU Shengwei, SUN Pinghe, SU Weifeng, et al. Use of basalt fiber drilling fluid in trenchless works at high altitudes[J]. Drilling Engineering, 2022, 49(3):139-145. doi: 10.12143/j.ztgc.2022.03.018
    [13] 戴立瑶. 高吸油树脂随钻堵漏剂研制与作用机理研究[D]. 青岛: 中国石油大学(华东), 2021.

    DAI Liyao. Research on development and action mechanism of high oil absorbent resin follow-drilling plugging agent[D]. Qingdao: China University of Petroleum(East China), 2021.
    [14] BAI Y R, DAI L Y, SUN J S, et al. Plugging performance and mechanism of an oil-absorbing gel for lost circulation control while drilling in fractured formations[J]. Petroleum Science, 2022, 19(6):2941-2958. doi: 10.1016/j.petsci.2022.08.004
    [15] 刘书杰, 刘和兴, 王成文, 等. 超深水裂缝储层自降解随钻堵漏剂性能研究[J]. 中国海上油气,2022,34(2):107-115. doi: 10.11935/j.issn.1673-1506.2022.02.013

    LIU Shujie, LIU Hexing, WANG Chengwen, et al. Study on properties of self-degrading lost circulation agent while drilling in ultra-deepwater fractured reservoir[J]. China Offshore Oil and Gas, 2022, 34(2):107-115. doi: 10.11935/j.issn.1673-1506.2022.02.013
    [16] LI D Q, PANG S C, XUAN Y, et al. Nano-Grafted acrylamide copolymer as an anti-temperature and anti-calcium fluid loss agent for Water-Based drilling fluids[J]. Energy and Fuels, 2023, 37(10):7213-7220. doi: 10.1021/acs.energyfuels.3c00919
    [17] 周志世, 张宁, 张欢庆, 等. FCL工程纤维在碳酸盐岩裂缝性漏失堵漏中的应用[J]. 钻井液与完井液,2012,29(6):49-50,53. doi: 10.3969/j.issn.1001-5620.2012.06.015

    ZHOU Zhishi, ZHANG Ning, ZHANG Huanqing, et al. Engineering fiber FCL used for mud loss control in fractured carbonatite formation[J]. Drilling Fluid & Completion Fluid, 2012, 29(6):49-50,53. doi: 10.3969/j.issn.1001-5620.2012.06.015
    [18] 陈家旭, 李兆丰, 邱正松, 等. 高酸溶纤维堵漏剂的实验研究[J]. 钻井液与完井液,2018,35(5):41-45. doi: 10.3969/j.issn.1001-5620.2018.05.008

    CHEN Jiaxu, LI Zhaofeng, QIU Zhengsong, et al. Study on highly acid soluble fibrous lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2018, 35(5):41-45. doi: 10.3969/j.issn.1001-5620.2018.05.008
    [19] 李传武, 兰凯, 杜小松, 等. 川南页岩气水平井钻井技术难点与对策[J]. 石油钻探技术,2020,48(3):16-21. doi: 10.11911/syztjs.2020055

    LI Chuanwu, LAN Kai, DU Xiaosong, et al. Difficulties and countermeasures in horizontal well drilling for shale gas in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3):16-21. doi: 10.11911/syztjs.2020055
    [20] 石崇东, 王万庆, 史配铭, 等. 盐池区块深层页岩气水平井钻井关键技术研究[J]. 石油钻探技术,2021,49(6):23-28. doi: 10.11911/syztjs.2021007

    SHI Chongdong, WANG Wanqing, SHI Peiming, et al. Research on key drilling technology for horizontal wells in the deep shale gas reservoirs in Yanchi block[J]. Petroleum Drilling Techniques, 2021, 49(6):23-28. doi: 10.11911/syztjs.2021007
    [21] 刘蓉蓉. 基于Fenton反应的植物纤维改性与应用研究[D]. 天津: 天津科技大学, 2020.

    LIU Rongrong. Modification of plant fiber and its application based on Fenton reaction[D]. Tianjin: Tianjin University of Science & Technology, 2020.
    [22] 韩永良, 李贺, 严小育, 等. 木桨纤维溶解过程分析及溶液表观粘度测试[J]. 山东纺织科技,2016,57(6):28-31. doi: 10.3969/j.issn.1009-3028.2016.06.009

    HAN Yongliang, LI He, YAN Xiaoyu, et al. Analysis of wood pulp fiber dissolution process and testing apparent viscosity of the solution[J]. Shandong Textile Science & Technology, 2016, 57(6):28-31. doi: 10.3969/j.issn.1009-3028.2016.06.009
    [23] 董洪栋. 松科2井抗高温随钻堵漏材料优选及封堵效果评价[D]. 成都: 成都理工大学, 2017.

    DONG Hongdong. Selection of high temperature resistant plugging material and its plugging effect evaluation for SK2[D]. Chengdu: Chengdu University of Technology, 2017.
    [24] 刘继云, 杨学莉, 刘莹莹, 等. 表面改性核桃壳对聚乳酸/核桃壳粉体复合材料性能的影响[J]. 中国塑料,2014,28(3):40-45.

    LIU Jiyun, YANG Xueli, LIU Yingying, et al. Effect of surface modification of walnut shell on properties of poly (lactic acid)/walnut shell powder composites[J]. China Plastics, 2014, 28(3):40-45.
    [25] Q/SY 17096-2016. 钻井液用随钻堵漏剂——改性植物纤维[S]. 北京: 石油工业出版社, 2016.

    Q/SY 17096-2016. Plugging agents while drilling used in drilling fluids—Modifed vegetable fibres[S]. Beijing: Petroleum Industry Press, 2016.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  80
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-14
  • 修回日期:  2024-05-25
  • 刊出日期:  2024-11-07

目录

    /

    返回文章
    返回