留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳酸盐岩储层高酸溶多级架桥暂堵型钻井完井液体系

高伟 范胜 齐彪 代昌楼 贾虎 牛骋程

高伟,范胜,齐彪,等. 碳酸盐岩储层高酸溶多级架桥暂堵型钻井完井液体系[J]. 钻井液与完井液,2024,41(5):589-602 doi: 10.12358/j.issn.1001-5620.2024.05.005
引用本文: 高伟,范胜,齐彪,等. 碳酸盐岩储层高酸溶多级架桥暂堵型钻井完井液体系[J]. 钻井液与完井液,2024,41(5):589-602 doi: 10.12358/j.issn.1001-5620.2024.05.005
GAO Wei, FAN Sheng, QI Biao, et al.A temporary plugging drill-in fluid with highly soluble multilevel bridging particles for carbonate reservoir[J]. Drilling Fluid & Completion Fluid,2024, 41(5):589-602 doi: 10.12358/j.issn.1001-5620.2024.05.005
Citation: GAO Wei, FAN Sheng, QI Biao, et al.A temporary plugging drill-in fluid with highly soluble multilevel bridging particles for carbonate reservoir[J]. Drilling Fluid & Completion Fluid,2024, 41(5):589-602 doi: 10.12358/j.issn.1001-5620.2024.05.005

碳酸盐岩储层高酸溶多级架桥暂堵型钻井完井液体系

doi: 10.12358/j.issn.1001-5620.2024.05.005
基金项目: 霍英东教育基金会第十七届高等院校青年教师基金“离子液体纳米复合凝胶的构筑及堵水堵漏机理研究”(171043);四川省区域创新合作项目“准噶尔盆地南缘深层油气藏钻完井离子液体凝胶堵漏机理研究”(2020YFQ0036)。
详细信息
    作者简介:

    高伟,高级工程师,1983年生,现主要从事钻井完井液、储层保护研究工作

    通讯作者:

    贾虎,博士后,教授,1983年生,主要从事油气田化学、储层保护与改造、提高油气采收率领域的科研工作。E-mail:tiger-jia@163.com/jiahuswpu@swpu.edu.cn。

  • 中图分类号: TE258

A Temporary Plugging Drill-in Fluid with Highly Soluble Multilevel Bridging Particles for Carbonate Reservoir

  • 摘要: 以顺北二区碳酸盐岩储层为研究对象,通过岩心裂缝稳定性校正评价了储层敏感性,开展了现用钻井液伤害评价,明确了储层损害主控因素为应力敏感伤害和固相伤害,2种伤害因素累计占比达78.07%。采取“钻井可暂堵、完井可解堵”理念和保护微裂缝为主的储层保护思路,根据裂缝架桥封堵理论,研选了高酸溶固相封堵材料耦合可降解纤维关键材料。通过抗温、抗盐抗钙、沉降稳定性、配伍性及储层保护性能评价,形成了耐高温180 ℃多级架桥储层保护钻井完井液体系,其承压超过10 MPa,酸化后渗透率恢复率均值可达96.86%,相对常规不含酸溶暂堵材料体系提高了16.23%,具有强封堵、高返排的特点,有望减轻顺北二区碳酸盐岩储层的损害。

     

  • 图  1  不同裂缝岩心渗透率随时间的下降规律(左:原始结果;右:处理结果)

    图  2  不同裂缝岩心数据的归一化处理(左)和线性拟合关系(右)

    图  3  岩样水敏+盐敏(左)及碱敏(右)修正前后的曲线

    图  4  不同裂缝岩心渗透率随有效应力的变化

    图  5  不同随钻封堵材料的粒径分布曲线

    图  6  裂缝封堵后的样貌

    图  7  裂缝岩心承压滤失曲线

    图  8  不同岩心的渗透率恢复曲线

    图  9  岩心返排后的样貌

    图  10  酸驱后岩心样貌

    图  11  岩心酸驱后返排曲线

    表  1  岩样校正前后的敏感性校正结果

    岩心敏感性裂缝宽
    度/μm
    校正前损
    害率/%
    校正后损
    害率/%
    下降幅
    度/%
    损害
    程度
    6#水敏+盐敏22.0221.3915.6926.65
    30#碱敏26.8043.2230.2330.06中等偏弱
    下载: 导出CSV

    表  2  岩心渗透率随有效应力变化拟合曲线参数

    岩心长度/
    cm
    直径/
    cm
    拟合
    公式
    敏感
    指数
    R2
    18#4.3212.521y = 250.54exp(−0.465x)0.4650.9968
    26#5.2382.520y = 240.80exp(−0.369x)0.3690.9969
    8#5.1902.503y = 197.13exp(−0.469x)0.4690.9886
    下载: 导出CSV

    表  3  现用钻井完井液对裂缝岩心的动态损害实验评价

    钻井完井液岩心长度/cm岩心直径/cm裂缝宽度/μm损害前渗透率/mD损害后渗透率/mD渗透率伤害率/%
    钻井液5.0162.49350.13534.67229.1557.15
    5.1022.51341.54304.28124.2059.18
    5.0822.51233.75163.1761.8962.07
    5.1212.50159.93913.39533.9641.54
    滤液5.0112.50359.91912.48890.232.44
    5.1022.50954.46685.45548.365.71
    4.9932.50444.77380.92333.317.25
    5.0122.50430.31118.22100.035.24
    下载: 导出CSV

    表  4  顺北二区储层的损害类型及其占比

    储层伤害
    因素
    单一因素
    伤害率/%
    占比/
    %
    储层伤害
    因素
    单一因素
    伤害率/%
    占比/
    %
    速敏00应力敏95.8649.61
    水敏+盐敏19.3610.02固相伤害54.9928.46
    碱敏17.869.24滤液5.162.67
      注:结合工区实际钻井完井液pH值为8~10,表中碱敏伤害率是pH =10下的损害程度。
    下载: 导出CSV

    表  5  随钻封堵材料的酸溶性

    材料类型材料名称初始质量m0/g滤纸质量m2/g滤纸+酸溶后质量m1/g酸溶率/%
    刚性材料GZD1.001.001.0298.0
    微锰矿粉1.001.001.0298.0
    核桃壳1.001.011.7130.0
    充填材料碳酸钙1.001.001.0199.0
    单向压力封闭剂1.010.991.2970.3
    YC-181.002.182.6256.0
    纤维材料SQD-98(细)1.002.172.2988.0
    改性木质素纤维1.002.172.7740.0
    石棉纤维1.002.162.8828.0
    降滤失剂AP2201.002.172.6354.0
    抗盐抗钙高温降滤失剂1.002.183.0612.0
    下载: 导出CSV

    表  6  不同浓度GZD对不同裂缝宽度的影响

    GZD/%裂缝宽度/μm累计滤失量/mL突破压力/MPa
    1.093.46175.270.436
    58.86158.810.497
    14.53107.700.563
    2.095.67153.510.511
    50.12136.170.543
    18.7685.470.564
    3.098.22121.670.541
    51.63109.280.609
    7.5731.020.990
    下载: 导出CSV

    表  7  不同浓度SQD-98对不同裂缝宽度的影响

    SQD-98/%裂缝宽度/μm累计滤失量/mL突破压力/MPa
    1.092.48134.231.580
    46.12100.871.836
    15.6372.671.973
    2.096.42106.962.231
    53.0676.312.727
    11.2351.993.414
    3.094.3787.022.791
    48.8658.283.390
    12.2935.273.662
    下载: 导出CSV

    表  8  碳酸钙浓度对不同裂缝宽度的影响

    碳酸钙/
    %
    裂缝宽度/
    μm
    累计滤失量/
    mL
    突破压力/
    MPa
    1.091.4782.343.061
    49.6358.162.507
    2.097.3374.382.773
    50.0646.073.240
    2.594.6144.332.960
    61.8225.083.679
    3.096.9036.263.275
    55.1219.793.966
    1.094.4570.873.370
    57.5750.323.631
    2.096.9371.343.721
    54.4740.544.263
    2.598.0436.584.196
    50.2917.084.713
    3.094.8830.834.641
    46.9311.575.587
    下载: 导出CSV

    表  9  单向压力封闭剂浓度对不同裂缝宽度的影响

    单向压力
    封闭剂/%
    裂缝宽度/
    μm
    累计滤失量/
    mL
    突破压力/
    MPa
    0.592.6423.995.638
    62.4110.047.233
    1.094.8515.626.313
    53.747.488.176
    下载: 导出CSV

    表  10  YC-18对不同裂缝宽度的影响

    YC-18/%裂缝宽度/μm累计滤失量/mL突破压力/MPa
    0.291.634.2210.021
    56.931.3310.259
    下载: 导出CSV

    表  11  AP220浓度对不同裂缝宽度的影响

    AP220/%裂缝宽度/μm累计滤失量/mL突破压力/MPa
    0.291.632.1310.321
    56.930.6210.381
    0.393.071.8710.585
    51.370.5410.827
    下载: 导出CSV

    表  12  钻井液的抗温性能和抗盐、抗钙性能(180 ℃、16 h)

    添加物实验
    条件
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLHTHP/
    mL
    0热滚前53.044.09.0
    热滚后55.045.59.51.8
    10.0%NaCl热滚前60.049.510.5
    热滚后59.048.011.04.4
    2.5%CaSO4热滚前67.557.010.5
    热滚后64.054.59.54.8
    5.0%CaSO4热滚前75.565.010.5
    热滚后72.061.011.07.1
    下载: 导出CSV
  • [1] 齐彪,李银婷,乐明,等. 塔河油田一井多靶可酸溶堵漏技术[J]. 钻井液与完井液,2022,39(6):730-737. doi: 10.12358/j.issn.1001-5620.2022.06.010

    QI Biao, LI Yinting, YUE Ming, et al. Study on an acid soluble LCM used for multi-target Well in Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):730-737. doi: 10.12358/j.issn.1001-5620.2022.06.010
    [2] RASHID F, GLOVER P W J, LORINCZI P, et al. Microstructural controls on reservoir quality in tight oil carbonate reservoir rocks[J]. Journal of Petroleum Science and Engineering, 2017, 156:814-826. doi: 10.1016/j.petrol.2017.06.056
    [3] WANG J L, SONG H Q, WANG Y H. Investigation on the micro-flow mechanism of enhanced oil recovery by low-salinity water flooding in carbonate reservoir[J]. Fuel, 2020, 266:117156. doi: 10.1016/j.fuel.2020.117156
    [4] FERGUSON C K, KLOTZ J A. Filtration from mud during drilling[J]. Journal of Petroleum Technology, 1954, 6(2):30-43. doi: 10.2118/289-G
    [5] 汪伟英,张顺元,王玺,等. 钻井过程中裂缝性储层伤害机理及试验评价方法[J]. 石油天然气学报,2011,33(10):108-111.

    WANG Weiying, ZHANG Shunyuan, WANG Xi, et al. Damage mechanism and experimental evaluation method of fractured reservoir during drilling process[J]. Journal of Oil and Gas Technology, 2011, 33(10):108-111.
    [6] CUISIAT F, GRANDE L, HØEG K. Laboratory testing of long term fracture permeability in shales[C]//SPE/ISRM Rock Mechanics Conference. Irving, Texas: SPE, 2002: SPE-78215-MS.
    [7] BRANTUT N, HEAP M J, MEREDITH P G, et al. Time-dependent cracking and brittle creep in crustal rocks: a review[J]. Journal of Structural Geology, 2013, 52:17-43. doi: 10.1016/j.jsg.2013.03.007
    [8] 康毅力,高原,邱建君,等. 强应力敏感裂缝性致密砂岩屏蔽暂堵钻井完井液[J]. 钻井液与完井液,2014,31(6):28-32. doi: 10.3969/j.issn.1001-5620.2014.06.008

    KANG Yili, GAO Yuan, QIU Jianjun, et al. Temporary plugging drill-in fluid for strongly stress sensitive fractured tight sands drilling[J]. Drilling Fluid & Completion Fluid, 2014, 31(6):28-32. doi: 10.3969/j.issn.1001-5620.2014.06.008
    [9] 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40.

    SHU Yong, JIANG Luming, YANG Jun, et al. Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):35-40.
    [10] 马磊,袁学强,张万栋,等. 乌石17-2油田强封堵合成基钻井液体系[J]. 钻井液与完井液,2022,39(5):558-564.

    MA Lei, YUAN Xueqiang, ZHANG Wandong, et al. A synthetic based drilling fluid with strong plugging capacity for block Wushi 17-2[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):558-564.
    [11] DICK M A, HEINZ T J, SVOBODA C F, et al. Optimizing the selection of bridging particles for reservoir drilling fluids[C]//SPE International Symposium on Formation Damage Control. Lafayette, Louisiana: SPE, 2000: SPE-58793-MS.
    [12] 朱金智,游利军,张震,等. 聚磺混油钻井液对深层裂缝性致密储层的保护能力评价[J]. 石油钻采工艺,2018,40(3):311-317.

    ZHU Jinzhi, YOU Lijun, ZHANG Zhen, et al. The protective ability evaluation of polysulfonate mixed drilling fluid for deep fractured tight reservoirs[J]. Oil Drilling & Production Technology, 2018, 40(3):311-317.
    [13] SALEH T A. Advanced trends of shale inhibitors for enhanced properties of water-based drilling fluid[J]. Upstream Oil and Gas Technology, 2022, 8:100069. doi: 10.1016/j.upstre.2022.100069
    [14] AGI A, OSEH J O, GBADAMOSI A, et al. Performance evaluation of nanosilica derived from agro-waste as lost circulation agent in water-based mud[J]. Petroleum Research, 2023, 8(2):256-269. doi: 10.1016/j.ptlrs.2022.07.005
    [15] 李胜. 双保型油田水无固相钻井液体系[J]. 钻井液与完井液,2023,40(4):431-437.

    LI Sheng. Research and application of dual-protective oilfield water drilling fluids system without solid[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):431-437.
    [16] 王双威,张闯,张洁,等. 狮子沟构造带裂缝储层保护钻井液配方[J]. 科学技术与工程,2021,21(19):7991-7996.

    WANG Shuangwei, ZHANG Chuang, ZHANG Jie, et al. The formulation of drilling fluid to protect the fracture reservoir of the Shizigou structural belt[J]. Science Technology and Engineering, 2021, 21(19):7991-7996.
    [17] WANG L, GAO W, DAI C L. Study on formation damage mechanism of carbonate reservoir in Shunbei No. 2 area of northwest oil field[C]//IOP Conference Series: Earth and Environmental Science. Beijing: IOP Publishing Ltd, 2023: 012010.
    [18] LI S X, NIU C C, ZHANG Y F, et al. Application of flexible colloid-fiber compound plugging technology in oil and gas wells with large differential pressure in the East China Sea[J]. MATEC Web of Conferences, 2022, 356:01011. doi: 10.1051/matecconf/202235601011
    [19] 薛永超,程林松. 微裂缝低渗透岩石渗透率随围压变化实验研究[J]. 石油实验地质,2007,29(1):108-110.

    XUE Yongchao, CHENG Linsong. Experimental study on permeability variation with confining pressure in micro-fracture and low-permeability rock[J]. Petroleum Geology and Experiment, 2007, 29(1):108-110.
    [20] BRUEL D, CACAS M C, LEDOUX E, et al. Modelling storage behaviour in a fractured rock mass[J]. Journal of Hydrology, 1994, 162(3/4):267-278.
    [21] JONES F O, OWENS W W. A laboratory study of Low-Permeability gas sands[J]. Journal of Petroleum Technology, 1980, 32(9):1631-1640. doi: 10.2118/7551-PA
    [22] 黄帅,彭彩珍. 基于灰色关联的产量递减因素分析[J]. 油气藏评价与开发,2018,8(4):33-35,41. doi: 10.3969/j.issn.2095-1426.2018.04.007

    HUANG Shuai, PENG Caizhen. Study on production decline factors based on gray correlation[J]. Reservoir Evaluation and Development, 2018, 8(4):33-35,41. doi: 10.3969/j.issn.2095-1426.2018.04.007
    [23] 苏晓明,练章华,方俊伟,等. 适用于塔中区块碳酸盐岩缝洞型异常高温高储集层的钻井液承压堵漏材料[J]. 石油勘探与开发,2019,46(1):165-172.

    SU Xiaoming, LIAN Zhanghua, FANG Junwei, et al. Lost circulation material for abnormally high temperature and pressure fractured-vuggy carbonate reservoirs in Tazhong block, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1):165-172.
    [24] 郑斌. 抗高温环保型降滤失剂低聚糖接枝物的合成与应用[J]. 钻井液与完井液,2023,40(3):313-318.

    ZHENG Bin. The synthesis and application of an environmentally friendly high temperature graft oligosaccharide filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):313-318.
    [25] 李学涯. 泥页岩微裂缝实验室模拟及封堵评价[D]. 成都: 西南石油大学, 2018.

    LI Xueya. Laboratory simulation of mud shale microcracks and evaluation of plugging[D]. Chengdu: Southwest Petroleum University, 2018.
    [26] 王斌. 裂缝性漏层钻井液漏失与堵漏计算机模拟研究[D]. 成都: 西南石油大学, 2019.

    WANG Bin. Research on computer simulation of fluid loss and plugging in fractured leaky formation[D]. Chengdu: Southwest Petroleum University, 2019.
    [27] MEHRABIAN A, ABOUSLEIMAN Y. Wellbore geomechanics of extended drilling margin and engineered lost-circulation solutions[J]. SPE Journal, 2017, 22(4):1178-1188. doi: 10.2118/185945-PA
    [28] YAN X P, KANG Y L, XU C Y, et al. Fracture plugging zone for lost circulation control in fractured reservoirs: multiscale structure and structure characterization methods[J]. Powder Technology, 2020, 370:159-175. doi: 10.1016/j.powtec.2020.05.026
  • 加载中
图(11) / 表(12)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  90
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-20
  • 刊出日期:  2024-11-07

目录

    /

    返回文章
    返回