留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温控液-固相变堵漏体系的研制及原位自生堵漏技术

王家钦 杨燕洁 赵诚 刘尚豪 暴丹 张鹏

王家钦,杨燕洁,赵诚,等. 温控液-固相变堵漏体系的研制及原位自生堵漏技术[J]. 钻井液与完井液,2024,41(5):582-588 doi: 10.12358/j.issn.1001-5620.2024.05.004
引用本文: 王家钦,杨燕洁,赵诚,等. 温控液-固相变堵漏体系的研制及原位自生堵漏技术[J]. 钻井液与完井液,2024,41(5):582-588 doi: 10.12358/j.issn.1001-5620.2024.05.004
WANG Jiaqin, YANG Yanjie, ZHAO Cheng, et al.Study on temperature-controlled liquid-solid phase change mud loss control system and mud loss control with in-situ self-generated bridging particles[J]. Drilling Fluid & Completion Fluid,2024, 41(5):582-588 doi: 10.12358/j.issn.1001-5620.2024.05.004
Citation: WANG Jiaqin, YANG Yanjie, ZHAO Cheng, et al.Study on temperature-controlled liquid-solid phase change mud loss control system and mud loss control with in-situ self-generated bridging particles[J]. Drilling Fluid & Completion Fluid,2024, 41(5):582-588 doi: 10.12358/j.issn.1001-5620.2024.05.004

温控液-固相变堵漏体系的研制及原位自生堵漏技术

doi: 10.12358/j.issn.1001-5620.2024.05.004
基金项目: 国家自然基金“深层裂缝原位自生颗粒的相变成型调控及靶向自适应封堵强化井壁机制”(52304006)、重庆市自然科学基金面上项目“页岩地层基于热致液-固相变原理的堵漏颗粒原位自生成型及其自适应封堵调控机制”(CSTB2022NSCQ-MSX1554)、重庆科技大学硕士研究生创新计划项目“页岩地层基于热致液-固相变原理的堵漏颗粒原位自生成型及其自适应封堵调控机制”(YKJCX2220501)、重庆市研究生科研创新项目“低凝点耐温型清洁压裂液的制备及其性能研究”(CYS23748)。
详细信息
    作者简介:

    王家钦,重庆科技学院化学专业在读硕士研究生,主要研究方向为油气田化学。电话 18716371129;E-mail:Wang74743@foxmail.com

    通讯作者:

    暴丹,博士,研究方向为钻井液化学与工艺。电话 18765920408;E-mail:18765920408@163.com

  • 中图分类号: TE282

Study on Temperature-Controlled Liquid-Solid Phase Change Mud Loss Control System and Mud Loss Control with In-situ Self-Generated Bridging Particles

  • 摘要: 裂缝性漏失是钻井过程中面临的技术难题,目前技术瓶颈是传统桥接堵漏材料与漏失通道匹配度低,易重复性漏失。基于热固性树脂乳化及高温交联聚并原理,研制了温控液-固相变堵漏体系,可自适应进入不同开度裂缝,受漏层高温响应作用,在裂缝中原位生成宽粒径分布的高强度堵漏颗粒。开展了原位自生堵漏颗粒的结构表征、力学性能、裂缝封堵性能测试等。结果表明,温控液-固相变堵漏体系中高分子树脂含量为37%,乳化剂含量为5.2%、分散剂含量为0.07%、交联剂含量为25.9%、蒸馏水含量为31.83%,该体系可在50~90 ℃漏层温度条件下原位生成0.1~5 mm宽粒径分布的堵漏颗粒。120 ℃老化后的堵漏颗粒60 MPa压力下D90降级率仅为0.4%,抗压强度高。仅用一套温控液-固相变堵漏体系能同时封堵1~5 mm开度裂缝,承压能力达到10 MPa,实现自适应封堵,有望解决未知裂缝开度的钻井液漏失技术难题。

     

  • 图  1  温控液-固相变堵漏体系相变生成堵漏颗粒过程

    图  2  原位自生堵漏剂红外光谱图

    图  3  原位自生堵漏剂的热重分析

    图  4  原位自生堵漏颗粒成品图

    图  5  原位自生堵漏颗粒粒径分布曲线

    图  6  不同相变温度下的原位自生堵漏颗粒

    图  7  不同相变温度下原位自生堵漏颗粒粒径分布

    图  8  原位自生颗粒在1 mm、3 mm、5 mm不同开度裂缝封堵层

    表  1  不同相变温度下原位自生堵漏颗粒的D90

    T相变/℃D90/mmT相变/℃D90/mm
    501.83802.80
    601.96903.03
    701.96
    下载: 导出CSV

    表  2  抗压破碎降级率测定

    老化条件加压前
    D90/mm
    加压后
    D’90/mm
    D90降级
    率/%
    过200目筛后
    的破碎率%
    老化前2.512.500.400.23
    120 ℃、16 h2.512.500.400.31
    下载: 导出CSV
  • [1] 郭金平. 钻井工程中井漏预防及堵漏技术研究[J]. 科技创新与应用,2022,12(33):173-176.

    GUO Jinping. Research on well leakage prevention and plugging technology in drilling engineering[J]. Technology Innovation and Application, 2022, 12(33):173-176.
    [2] XU C Y, YAN X P, KANG Y L, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2):399-408.
    [3] 许成元,张洪琳,康毅力,等. 深层裂缝性储层物理类堵漏材料定量评价优选方法[J]. 天然气工业,2021,41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011

    XU Chengyuan, ZHANG Honglin, KANG Yili, et al. Quantitative evaluation and selection method of physical plugging materials in deep fractured reservoirs[J]. Natural Gas Industry, 2021, 41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011
    [4] 徐同台. 钻井工程防漏堵漏技术[M]. 北京: 石油工业出版社, 1997.

    XU Tongtai. Leakage prevention and plugging technology in drilling engineering[M]. Beijing: Petroleum industry press, 1997.
    [5] 孙金声,王宗轮,刘敬平,等. 南极地区低温钻井液研究进展与发展方向[J]. 石油勘探与开发,2022,49(5):1005-1011. doi: 10.11698/PED.20220253

    SUN Jinsheng, WANG Zonglun, LIU Jingping, et al. Research progress and development direction of low-temperature drilling fluid for Antarctic region[J]. Petroleum Exploration and Development, 2022, 49(5):1005-1011. doi: 10.11698/PED.20220253
    [6] 许成元,闫霄鹏,康毅力,等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发,2020,47(2):399-408.

    XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deed naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2):399-408.
    [7] 杨沛,陈勉,金衍,等. 裂缝承压能力模型及其在裂缝地层堵漏中的应用[J]. 岩石力学与工程学报,2012,31(3):479-487.

    YANG Pei, CHEN Mian, JIN Yan, et al. Crack pressure bearing capacity model and its application to plugging of fractured formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):479-487.
    [8] 王明波,郭亚亮,方明君,等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报,2017,38(5):597-606.

    WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and laws of drilling fluid loss in fractured formations[J]. Acta Petrolei Sinica, 2017, 38(5):597-606.
    [9] 康毅力,余海峰,许成元,等. 毫米级宽度裂缝封堵层优化设计[J]. 天然气工业,2014,34(11):88-94.

    KANG Yili, YU Haifeng, XU Chengyuan, et al. An optimal design for millimeter-wide fracture-plugged zones[J]. Natural Gas Industry, 2014, 34(11):88-94.
    [10] 邱正松,暴丹,刘均一,等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报,2018,39(5):587-596.

    QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5):587-596.
    [11] ALSABA M, NYGAARD R, SAASEN A, et al. Laboratory evaluation of sealing wide fractures using conventional lost circulation materials[C]//SPE Annual Technical Conference and Exhibition. Amsterdam, The Netherlands, 2014: SPE-170576-MS.
    [12] JEENNAKORN M, NYGAARD R, NES O M, et al. Testing conditions make a difference when testing LCM[J]. Journal of Natural Gas Science and Engineering, 2017, 46:375-386. doi: 10.1016/j.jngse.2017.08.003
    [13] 康毅力,许成元,唐龙,等. 构筑井周坚韧屏障: 井漏控制理论与方法[J]. 石油勘探与开发,2014,41(4):473-479.

    KANG Yili, XU Chengyuan, TANG Long, et al. Constructing a tough shield around the wellbore: theory and method for lost-circulation control[J]. Petroleum Exploration and Development, 2014, 41(4):473-479.
    [14] 许成元,张敬逸,康毅力,等. 裂缝封堵层结构形成与演化机制[J]. 石油勘探与开发,2021,48(1):202-210.

    XU Chengyuan, ZHANG Jingyi, KANG Yili, et al. Structural formation and evolution mechanisms of fracture plugging zone[J]. Petroleum Exploration and Development, 2021, 48(1):202-210.
    [15] 暴丹,邱正松,叶链,等. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报,2020,41(1):106-115.

    BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J]. Acta Petrolei Sinica, 2020, 41(1):106-115.
    [16] 孙金声,雷少飞,白英睿,等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版),2020,44(4):100-110.

    SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4):100-110.
    [17] 蒋官澄,董腾飞,崔凯潇,等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发,2022,49(3):577-585.

    JIANG Guancheng, DONG Tengfei, CUI Kaixiao, et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development, 2022, 49(3):577-585.
    [18] HUANG J S, GONG W, LIN L J, et al. In-situ proppant: beads, microproppant, and channelized-proppant[C]//Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi, UAE, 2019: SPE-197638-MS.
    [19] CHANG F F, BERGER P D, LEE C H. In-Situ formation of proppant and highly permeable blocks for hydraulic fracturing[C]//SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA, 2015: SPE-173328-MS.
    [20] 王健. 就地生成支撑剂颗粒实验研究[D]. 西安: 西安石油大学, 2020.

    WANG Jian. Experimental study on the formation of proppant particles in situ[D]. Xi'an: Xi'an Shiyou University, 2020.
    [21] 赵立强,张楠林,张以明,等. 自支撑相变压裂技术室内研究与现场应用[J]. 天然气工业,2020,40(11):60-67.

    ZHAO Liqiang, ZHANG Nanlin, ZHANG Yiming, et al. Laboratory study and field application of self-propping phase-transition fracturing technology[J]. Natural Gas Industry, 2020, 40(11):60-67.
    [22] ZHAO L Q, CHEN Y X, DU J, et al. Experimental study on a new type of self-propping fracturing technology[J]. Energy, 2019, 183:249-261. doi: 10.1016/j.energy.2019.06.137
    [23] 杜光焰, 杨勇, 赵立强, 等. 一种用于相变压裂的相变压裂液体系: CN106190086A[P]. 2016-12-07.

    DU Guangyan, YANG Yong, ZHAO Liqiang, et al. A system of phase change fracturing fluid used for phase change fracturing: CN106190086A[P]. 2016-12-07.
    [24] 戴彩丽,刘佳伟,李琳,等. 自生长水凝胶粒子特性及裂缝调控作用机理[J]. 石油学报,2022,43(6):840-848.

    DAI Caili, LIU Jiawei, LI Lin, et al. Characteristics and action mechanism of self-growing hydrogel particle fracture control system[J]. Acta Petrolei Sinica, 2022, 43(6):840-848.
    [25] 王洋, 范宏伟, 王小香, 等. 一种就地生成颗粒的深部调剖体系及其制备和使用方法: CN109054786A[P]. 2018-12-21.

    WANG Yang, FAN Hongwei, WANG Xiaoxiang, et al. A deep profile control system for in-situ generation of particles, and preparation and use methods: CN109054786A[P]. 2018-12-21.
    [26] 李文哲,付志,张震,等. 用于诱导微裂缝封堵的油基凝胶体系[J]. 钻井液与完井液,2023,40(4):446-452,461.

    LI Wenzhe, FU Zhi, ZHANG Zhen, et al. Study and application of an oil-based gel fluid for sealing induced micro-fractures[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):446-452,461.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  89
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-06-03
  • 刊出日期:  2024-11-07

目录

    /

    返回文章
    返回