Study on Temperature-Controlled Liquid-Solid Phase Change Mud Loss Control System and Mud Loss Control with In-situ Self-Generated Bridging Particles
-
摘要: 裂缝性漏失是钻井过程中面临的技术难题,目前技术瓶颈是传统桥接堵漏材料与漏失通道匹配度低,易重复性漏失。基于热固性树脂乳化及高温交联聚并原理,研制了温控液-固相变堵漏体系,可自适应进入不同开度裂缝,受漏层高温响应作用,在裂缝中原位生成宽粒径分布的高强度堵漏颗粒。开展了原位自生堵漏颗粒的结构表征、力学性能、裂缝封堵性能测试等。结果表明,温控液-固相变堵漏体系中高分子树脂含量为37%,乳化剂含量为5.2%、分散剂含量为0.07%、交联剂含量为25.9%、蒸馏水含量为31.83%,该体系可在50~90 ℃漏层温度条件下原位生成0.1~5 mm宽粒径分布的堵漏颗粒。120 ℃老化后的堵漏颗粒60 MPa压力下D90降级率仅为0.4%,抗压强度高。仅用一套温控液-固相变堵漏体系能同时封堵1~5 mm开度裂缝,承压能力达到10 MPa,实现自适应封堵,有望解决未知裂缝开度的钻井液漏失技术难题。Abstract: Mud losses into fractures are a technical difficulty frequently encountered in drilling operation. The technical bottleneck is the poor matching between the traditional bridging lost circulation materials and the sizes of the channels through which the mud is lost, and this generally leads to repeated mud losses at the same depth. To deal with this problem, a temperature controlled liquid-solid phase change lost circulation control system is developed based on the principles of thermosetting resin emulsification and high-temperature crosslinking polymerization. This system can adaptively enter fractures of different openings, and form in-situ inside the fractures high-strength particles with a wide size distribution to control the mud losses under the action of the high temperatures in the mud loss zones. In laboratory studies, the structures of the bridging particles generated in-situ inside the fractures are characterized, the mechanical properties and performance of the bridging particles to plug the fractures are tested. The results of the studies show that in the temperature-controlled liquid-solid phase change lost circulation control system, the contents of the high molecular weight resin, the emulsifier, the dispersant, the crosslinking agent and the distilled water are 37%, 5.2%, 0.07%, 25.9% and 31.83%, respectively. This system can in-situ generate particles with sizes distributed between 0.1 mm and 5 mm at temperatures between 50 ℃ and 90 ℃ inside the mud loss zones. After being aged at 120 ℃, the D90 degrading rate of the bridging particles under 60 MPa is only 0.4%, indicating that the system has high compressive strength. Using one temperature-controlled liquid-solid phase change lost circulation control system, fractures with openings between 1 mm and 5 mm can all be plugged, and the plugged fractures can bear pressures up to10 MPa. This system can be used to realize adaptive plugging, and is expected to solve the difficulties in controlling mud losses into fractures of unknown openings.
-
表 1 不同相变温度下原位自生堵漏颗粒的D90值
T相变/℃ D90/mm T相变/℃ D90/mm 50 1.83 80 2.80 60 1.96 90 3.03 70 1.96 表 2 抗压破碎降级率测定
老化条件 加压前
D90/mm加压后
D’90/mmD90降级
率/%过200目筛后
的破碎率%老化前 2.51 2.50 0.40 0.23 120 ℃、16 h 2.51 2.50 0.40 0.31 -
[1] 郭金平. 钻井工程中井漏预防及堵漏技术研究[J]. 科技创新与应用,2022,12(33):173-176.GUO Jinping. Research on well leakage prevention and plugging technology in drilling engineering[J]. Technology Innovation and Application, 2022, 12(33):173-176. [2] XU C Y, YAN X P, KANG Y L, et al. Structural failure mechanism and strengthening method of plugging zone in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2):399-408. [3] 许成元,张洪琳,康毅力,等. 深层裂缝性储层物理类堵漏材料定量评价优选方法[J]. 天然气工业,2021,41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011XU Chengyuan, ZHANG Honglin, KANG Yili, et al. Quantitative evaluation and selection method of physical plugging materials in deep fractured reservoirs[J]. Natural Gas Industry, 2021, 41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011 [4] 徐同台. 钻井工程防漏堵漏技术[M]. 北京: 石油工业出版社, 1997.XU Tongtai. Leakage prevention and plugging technology in drilling engineering[M]. Beijing: Petroleum industry press, 1997. [5] 孙金声,王宗轮,刘敬平,等. 南极地区低温钻井液研究进展与发展方向[J]. 石油勘探与开发,2022,49(5):1005-1011. doi: 10.11698/PED.20220253SUN Jinsheng, WANG Zonglun, LIU Jingping, et al. Research progress and development direction of low-temperature drilling fluid for Antarctic region[J]. Petroleum Exploration and Development, 2022, 49(5):1005-1011. doi: 10.11698/PED.20220253 [6] 许成元,闫霄鹏,康毅力,等. 深层裂缝性储集层封堵层结构失稳机理与强化方法[J]. 石油勘探与开发,2020,47(2):399-408.XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of plugging zone in deed naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2):399-408. [7] 杨沛,陈勉,金衍,等. 裂缝承压能力模型及其在裂缝地层堵漏中的应用[J]. 岩石力学与工程学报,2012,31(3):479-487.YANG Pei, CHEN Mian, JIN Yan, et al. Crack pressure bearing capacity model and its application to plugging of fractured formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):479-487. [8] 王明波,郭亚亮,方明君,等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报,2017,38(5):597-606.WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and laws of drilling fluid loss in fractured formations[J]. Acta Petrolei Sinica, 2017, 38(5):597-606. [9] 康毅力,余海峰,许成元,等. 毫米级宽度裂缝封堵层优化设计[J]. 天然气工业,2014,34(11):88-94.KANG Yili, YU Haifeng, XU Chengyuan, et al. An optimal design for millimeter-wide fracture-plugged zones[J]. Natural Gas Industry, 2014, 34(11):88-94. [10] 邱正松,暴丹,刘均一,等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报,2018,39(5):587-596.QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5):587-596. [11] ALSABA M, NYGAARD R, SAASEN A, et al. Laboratory evaluation of sealing wide fractures using conventional lost circulation materials[C]//SPE Annual Technical Conference and Exhibition. Amsterdam, The Netherlands, 2014: SPE-170576-MS. [12] JEENNAKORN M, NYGAARD R, NES O M, et al. Testing conditions make a difference when testing LCM[J]. Journal of Natural Gas Science and Engineering, 2017, 46:375-386. doi: 10.1016/j.jngse.2017.08.003 [13] 康毅力,许成元,唐龙,等. 构筑井周坚韧屏障: 井漏控制理论与方法[J]. 石油勘探与开发,2014,41(4):473-479.KANG Yili, XU Chengyuan, TANG Long, et al. Constructing a tough shield around the wellbore: theory and method for lost-circulation control[J]. Petroleum Exploration and Development, 2014, 41(4):473-479. [14] 许成元,张敬逸,康毅力,等. 裂缝封堵层结构形成与演化机制[J]. 石油勘探与开发,2021,48(1):202-210.XU Chengyuan, ZHANG Jingyi, KANG Yili, et al. Structural formation and evolution mechanisms of fracture plugging zone[J]. Petroleum Exploration and Development, 2021, 48(1):202-210. [15] 暴丹,邱正松,叶链,等. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报,2020,41(1):106-115.BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J]. Acta Petrolei Sinica, 2020, 41(1):106-115. [16] 孙金声,雷少飞,白英睿,等. 智能材料在钻井液堵漏领域研究进展和应用展望[J]. 中国石油大学学报(自然科学版),2020,44(4):100-110.SUN Jinsheng, LEI Shaofei, BAI Yingrui, et al. Research progress and application prospects of smart materials in lost circulation control of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science) , 2020, 44(4):100-110. [17] 蒋官澄,董腾飞,崔凯潇,等. 智能钻井液技术研究现状与发展方向[J]. 石油勘探与开发,2022,49(3):577-585.JIANG Guancheng, DONG Tengfei, CUI Kaixiao, et al. Research status and development directions of intelligent drilling fluid technologies[J]. Petroleum Exploration and Development, 2022, 49(3):577-585. [18] HUANG J S, GONG W, LIN L J, et al. In-situ proppant: beads, microproppant, and channelized-proppant[C]//Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi, UAE, 2019: SPE-197638-MS. [19] CHANG F F, BERGER P D, LEE C H. In-Situ formation of proppant and highly permeable blocks for hydraulic fracturing[C]//SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA, 2015: SPE-173328-MS. [20] 王健. 就地生成支撑剂颗粒实验研究[D]. 西安: 西安石油大学, 2020.WANG Jian. Experimental study on the formation of proppant particles in situ[D]. Xi'an: Xi'an Shiyou University, 2020. [21] 赵立强,张楠林,张以明,等. 自支撑相变压裂技术室内研究与现场应用[J]. 天然气工业,2020,40(11):60-67.ZHAO Liqiang, ZHANG Nanlin, ZHANG Yiming, et al. Laboratory study and field application of self-propping phase-transition fracturing technology[J]. Natural Gas Industry, 2020, 40(11):60-67. [22] ZHAO L Q, CHEN Y X, DU J, et al. Experimental study on a new type of self-propping fracturing technology[J]. Energy, 2019, 183:249-261. doi: 10.1016/j.energy.2019.06.137 [23] 杜光焰, 杨勇, 赵立强, 等. 一种用于相变压裂的相变压裂液体系: CN106190086A[P]. 2016-12-07.DU Guangyan, YANG Yong, ZHAO Liqiang, et al. A system of phase change fracturing fluid used for phase change fracturing: CN106190086A[P]. 2016-12-07. [24] 戴彩丽,刘佳伟,李琳,等. 自生长水凝胶粒子特性及裂缝调控作用机理[J]. 石油学报,2022,43(6):840-848.DAI Caili, LIU Jiawei, LI Lin, et al. Characteristics and action mechanism of self-growing hydrogel particle fracture control system[J]. Acta Petrolei Sinica, 2022, 43(6):840-848. [25] 王洋, 范宏伟, 王小香, 等. 一种就地生成颗粒的深部调剖体系及其制备和使用方法: CN109054786A[P]. 2018-12-21.WANG Yang, FAN Hongwei, WANG Xiaoxiang, et al. A deep profile control system for in-situ generation of particles, and preparation and use methods: CN109054786A[P]. 2018-12-21. [26] 李文哲,付志,张震,等. 用于诱导微裂缝封堵的油基凝胶体系[J]. 钻井液与完井液,2023,40(4):446-452,461.LI Wenzhe, FU Zhi, ZHANG Zhen, et al. Study and application of an oil-based gel fluid for sealing induced micro-fractures[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):446-452,461. -