Synthesis and Evaluation of Modified Sulfomethylated Phenolic Resin MSP-1
-
摘要: 在分析磺甲基酚醛树脂应用现状和存在问题的基础上,从钻井液处理剂作用原理和分子结构设计的观点出发,在磺甲基酚醛树脂的分子结构上引入了吸附基团,成功地研制出了新型改性磺甲基酚醛树脂MSP-1。从室内评价结果来看,改性磺甲基酚醛树脂MSP-1在15%的盐水中降滤失效果与SMP-1相当,同时在30%盐水中有更好的降滤失效果,而且不必与SMK配伍评价,180 ℃老化后高温高压滤失量仅有17 mL;同时由于MSP-1含有强吸附基团,增加了酚醛树脂在膨润土上的吸附量,使得改性后的产品在15%盐水中基本不起泡,而且在钻井液中黏度效应较低,具有良好的推广应用前景。
-
关键词:
- 磺甲基酚醛树脂SMP /
- 改性磺甲基酚醛树脂 MSP-1 /
- 高温高压滤失量 /
- 黏度效应
Abstract: This paper analyzes the status quo of the application and deficiency of the original sulfomethylated phenolic resin as a filtration reducer in water based drilling fluids. Based on the analysis, a new modified sulfomethylated phenolic resin, MSP-1, has been developed through molecular design to replace the old sulfomethylated phenolic resin. In the molecules of MSP-1 adsorption groups are introduced to render MSP-1 special functions to overcome the problems encountered in field use. Laboratory evaluation results show that in 15% brine drilling fluids, the performance of MSP-1 is comparable to the old sulfomethylated phenolic resin SMP-1, while in 30% brine drilling fluids, MSP-1 performs better than SMP-1. Without the use of the thinner SMK (a sulfomethylated tannin extract), MSP-1 alone can reduce the high temperature high pressure filtration rate of a 30% brine drilling fluid to only 17 mL after aging at 180 ℃. Since there are strong adsorption groups in the molecules of MSP-1, the amount of MSP-1 adsorbed onto the surfaces of clay particles is increased, almost eliminating the foaming effect of SMP-1 in 15% brine drilling fluids and greatly reducing the viscosity effect of MSP-1 in drilling fluids. These advantages of MSP-1 have rendered it good prospects for promotion and application. -
表 1 改性磺甲基酚醛树脂MSP-1的钻井液性能
评价配方
180 ℃、16 hAV/
mPa·sFLAPI/
mLFLHTHP/
mL起泡率/
%4%膨润土+4%评价土+
5%SMC+5%MSP-1+
15%NaCl+2.5%Na2CO332 3.2 23 6 4%膨润土+4%评价土+
5%SMC+5%MSP-1+
30%NaCl+2.5%Na2CO334 3.2 17 表 2 不同树脂在密度为1.5 g/cm3 KCl 聚磺钻井液中的性能(150 ℃)
树脂 实验条件 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL4%MSP-1 室温 101.5 86 15.5 1.5/8 150 ℃、16 h 95.5 74 21.5 2.5/15 1.0 24 4%SMP-1 室温 92.5 71 21.5 1.5/10 150 ℃、16 h 92.0 68 24.0 5.0/22 1.5 68 4%JD-6 室温 96.0 75 21.0 3.0/12 150 ℃、16 h 96.0 75 21.0 3.5/18 1.2 39 表 3 在密度1.5 g/cm3 30%含盐钻井液中的性能(150 ℃)
树脂 实验条件 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL5%MSP-1 室温 78.0 86 11.0 1.5/7.5 150 ℃、16 h 105.0 83 22.0 3.5/14.0 1.6 13.5/2 5%SMP-2 室温 64.0 55 9.0 1.0/5.0 150 ℃、16 h 127.5 89 38.5 8.5/31.0 0.8 38.0/4 5%JD-6 室温 66.0 56 10.0 1.5/7.5 150 ℃、16 h 113.5 86 27.5 5.5/21.0 1.8 25.0/4 表 4 不同树脂在高温高密度钻井液中 抗膨润土污染的性能(180 ℃)
添加剂 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mL15%MSP-1 45.0 40 15.0 1.50/3.5 16.0 15%MSP-1+5%膨润土 50.0 44 7.0 2.00/5.0 13.0 15%MSP-1+7%膨润土 61.0 53 8.0 2.25/6.0 12.0 15%JD-6 48.0 41 17.0 2.50/7.0 7.2 15%JD-6+1%膨润土 53.0 44 9.0 2.50/7.5 17.0 15%JD-6+3%膨润土 56.5 46 10.5 3.00/8.5 23.0 15%JD-6+7%膨润土 68.0 57 11.0 3.00/9.0 25.0 15%SMP-1 101.0 69 32.0 14.00/47.5 9.8 15%SMP-2 80.0 61 19.0 6.00/31.5 8.8 注:高温高压滤失量实验条件为180 ℃、压差3.5 MPa。 表 5 120 ℃下加入MSP-1的钻井液性能及对比
配方 实验
条件AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL井浆 老化前 35.0 28 7.0 2.0/17.0 4.6 老化后 34.5 29 5.5 3.0/19.0 6.0 19.6/3 井浆+
5%MSP-1老化前 38.0 30 8.0 2.5/14.5 3.4 老化后 31.5 24 7.5 4.0/21.0 3.8 12.0/2 井浆+
5%SMP-1老化前 30.0 22 8.0 2.5/17.0 5.8 老化后 25.0 15 10.0 4.0/13.0 9.8 29.0/6 井浆+
5%JD-6老化前 35.0 27 8.0 2.0/15.0 3.4 老化后 28.5 22 6.5 2.5/21.0 3.8 11.8/2 注:实验条件为120 ℃老化16 h。 表 6 在150 ℃条件下加入MSP-1的钻井液性能及对比
配方 实验
条件PV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL泥饼厚
度/mm井浆+3%
SPNH老化前 37 9.0 2.5/23.0 2.4 老化后 21 7.5 1.0/11.0 2.6 6.2 1.5 井浆+3%
SPNH+
5%MSP-1老化前 37 11.5 5.5/28.0 1.8 老化后 23 4.5 2.0/7.5 1.8 5.8 1.5 井浆+3%
SPNH+
5%SMP-1老化前 30 8.5 1.0/17.5 2.8 老化后 22 3.5 0.5/7.0 2.0 6.8 2.5 井浆+3%
SPNH+
5%JD-6老化前 37 10.0 2.0/20.0 2.0 老化后 22 3.5 1.5/8.0 1.4 10.4 3.0 注:实验条件为150 ℃老化16 h。 -
[1] 鄢捷年. 抗高温抗盐失水控制剂磺甲基酚醛树脂(SMP)作用机理的研究[J]. 西南石油学院学报,1982(2):1-15.YAN Jienian. Action mechanism of anti high temperature and anti salt filtration controller sulfomethy lated phenolic resin(SMP)[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 1982(2):1-15. [2] 王友绍, 侯万国. 磺化甲基酚醛树脂(I)在钻井液中的热稳定性研究[J]. 石油与天然气化工,1998,027(1):46-49.WANG Youshao, HOU Wanguo. High temperature stability study of sulfomethy lated phenolic resin(Ⅰ) in drilling fluid[J]. Chemical Engineering of Oil & Gas, 1998, 027(1):46-49. [3] 张高波, 王善举, 郭民乐. 对磺化酚醛树脂生产应用的认识[J]. 钻井液与完井液,2000,17(3):21. doi: 10.3969/j.issn.1001-5620.2000.03.006ZHANG Gaobo, WANG Shanju, GUO Minle. Some understanding on the production and application of ulfomethylated phenolic resin[J]. Drilling Fluid & Completion Fluid, 2000, 17(3):21. doi: 10.3969/j.issn.1001-5620.2000.03.006 [4] 张敬春. 磺甲基酚醛树脂质量控制, 高温交联及起泡机理研究[D]. 东营: 中国石油大学(华东), 2010.ZHANG Jingchun. Study on quality control, high temperature cross linking and foaming mechanism of sulfomethylated phenolic resin[D]. Dongying: China University of Petroleum(East China), 2010. [5] 毛紫楠, 罗跃, 张斌, 等. 游离组分对磺化酚醛树脂抗盐性能的影响[J]. 精细石油化工进展,2008,9(8):16-17,20. doi: 10.3969/j.issn.1009-8348.2008.08.005MAO Zinan, LUO Yue, ZHANG Bin, et al. Effects of free components on anti-salt property of sulfonated phenol-formaldehyde resin[J]. Advances in Fine Petrochemicals, 2008, 9(8):16-17,20. doi: 10.3969/j.issn.1009-8348.2008.08.005 [6] 鄢捷年. 分光光度法测定SMP在(土般)土上的吸附量[J]. 西南石油学院学报,1982(1):25-36.YAN Jienian. Spectrphtpmetric determination of the amount of SMP adsorbed on bentonite[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 1982(1):25-36. [7] 张健, 李健, 李春霞, 等. 两性磺化酚醛树脂降滤失剂APR的研制[J]. 油田化学,1999(4):295-298.ZHANG Jian, LI Jian, LI Chunxia, et al. Preparation of amphoteric sulfonated phenolic resin APR as fluid loss controller for drilling fluids[J]. Oilfield Chemistry, 1999(4):295-298. [8] 张高波, 张希红, 郭民乐. 两性磺化酚醛树脂ASP-1的研制及性能评价[J]. 精细石油化工进展,2004,5(8):23-25. doi: 10.3969/j.issn.1009-8348.2004.08.007ZHANG Gaobo, ZHANG Xihong, GUO Minle. Preparation and evaluation of ampholytic sulfonated phenol formaldehyde resin ASP-1[J]. Advances in Fine Petrochemicals, 2004, 5(8):23-25. doi: 10.3969/j.issn.1009-8348.2004.08.007 [9] 杨小华. 胺改性磺化酚醛树脂降滤失剂SCP[J]. 油田化学,1996(3):68-69.YANG Xiaohua. Amine modified sulfomethylated phenolic resin SCP as filtrate loss reducer[J]. Oilfield Chemistry, 1996(3):68-69. [10] 李尧, 黄进军, 杨国兴, 等. 阳离子化磺化两性酚醛树脂降滤失剂XNSMP-Ⅲ的研制[J]. 油田化学,2009,26(4):351-353.LI Yao, HUANG Jinjun, YANG Guoxing, et al. Preparation of amphoteric phenol-formaldehyde resin as filtration loss reducer XNSMP-Ⅲ for water base drilling fluids[J]. Oilfield Chemistry, 2009, 26(4):351-353. [11] 姜伟, 李健, 郭拥军, 等. APR系列两性酚醛树脂的水溶液性质[J]. 油田化学,2000,17(4):289-291. doi: 10.3969/j.issn.1000-4092.2000.04.001JIANG Wei, LI Jian, GUO Yongjun, et al. Aqueous solution propertes of APR series amphoteric phenolicr esins as drilling fluid additives[J]. Oilfield Chemistry, 2000, 17(4):289-291. doi: 10.3969/j.issn.1000-4092.2000.04.001 [12] 谢青清. 阳离子型磺化酚醛树脂的研制[D]. 成都: 西南石油大学, 2014.XIE Qingqing. Reserch of cationed sulfornated phenolic resin[D]. Chengdu: Southwest Petroleum University, 2014. [13] 王平全, 谢青清, 黄芸, 等. 钻井液用阳离子型磺化酚醛树脂降滤失剂的研制[J]. 广东化工,2014,41(8):21-22. doi: 10.3969/j.issn.1007-1865.2014.08.011WANG Pingquan, XIE Qingqing, HUANG Yun, et al. Preparation of cationic sulfonated phenolic resin as flitration loss reducer for water based drilling fluid[J]. Guangdong Chemical Industry, 2014, 41(8):21-22. doi: 10.3969/j.issn.1007-1865.2014.08.011 [14] 张高波, 史沛谦, 何国军, 等. 高温抗盐降滤失剂SPX树脂[J]. 钻井液与完井液,2001,18(2):1-5. doi: 10.3969/j.issn.1001-5620.2001.02.001ZHANG Gaobo, SHI Peiqian, HE Guojun, et al. A salt-resisting filtrate reducer SPX with thermate stability[J]. Drilling Fluid & Completion Fluid, 2001, 18(2):1-5. doi: 10.3969/j.issn.1001-5620.2001.02.001 [15] 彭波, 张军, 彭商平, 等. 抗高温降滤失剂磺化羟甲基苯酚的合成与室内评价[J]. 钻井液与完井液,2009,26(6):7-9. doi: 10.3969/j.issn.1001-5620.2009.06.003PENG Bo, ZHANG Jun, PENG Shangping, et al. The synthesis and evaluation of a high temperature filtration reducer-sulfonated hydroxymethyl phenol[J]. Drilling Fluid & Completion Fluid, 2009, 26(6):7-9. doi: 10.3969/j.issn.1001-5620.2009.06.003 [16] 彭波, 郭文宇, 王怡清, 等. 富含羟基的SMP低聚物在钻井液中的性能研究[J]. 绵阳师范学院学报,2021,40(2):38-41,47.PENG Bo, GUO Wenyu, WANG Yiqing, et al. Properties of polyhydroxy SMP oligomer in drilling fluids[J]. Journal of Mianyang Teachers College, 2021, 40(2):38-41,47. [17] 陈晓飞, 鲁红升, 郭斐, 等. 耐高温钻井液降滤失剂的研究[J]. 精细石油化工进展,2012,13(1):23-26. doi: 10.3969/j.issn.1009-8348.2012.01.007CHEN Xiaofei, LU Hongsheng, GUO Fei, et al. Research of filtrate reducer for drlling fluid with high temperature resistance[J]. Advances in Fine Petrochemicals, 2012, 13(1):23-26. doi: 10.3969/j.issn.1009-8348.2012.01.007 [18] 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40.SHU Yong, JIANG Luming, YANG Jun, et al. Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):35-40 [19] 周启成. 环保型抗高温生物质合成树脂降滤失剂的研制及其在元坝地区的应用[J]. 钻井液与完井液,2023,40(1):41-46.ZHOU Qicheng. Development and application of environmental friendly high temperature resistant biomass synthetic resin filtrate reducer in yuanba area[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):41-46 [20] 王平全, 余冰洋, 王波, 等. 常用磺化酚醛树脂性能评价及分析[J]. 钻井液与完井液,2015,32(2):29-33. doi: 10.3969/j.issn.1001-5620.2015.02.008WANG Pingquan, YU Bingyang, WANG Bo, et al. Performance evaluation and analysis of commonly used sulfonated phenolic resins[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):29-33. doi: 10.3969/j.issn.1001-5620.2015.02.008 [21] 中国石油天然气股份有限公司塔里木油田分公司. Q_SYTZ0335-2018. 钻井液用降滤失剂 磺甲基酚醛树脂(SMP-3粉剂)技术要求及试验方法[S]. 塔里木: 中国石油天然气股份有限公司塔里木油田分公司, 2019.China National Petroleum Corporation tarim Oilfield Branch. Q_SY. TZ0335-2018. Technical requirements and test method of filtration reducer for drllling fluid—sulfonated methyl pheuol-fomaldehyde resin(SMP-Ⅲpowder)[S]. tarim: China National Petroleum Corporation tarim Oilfield Branch, 2019. [22] 张勇, 王彪, 刘晓栋. 国内钻井液用磺化酚醛树脂研究进展[J]. 油田化学,2016,33(3):547-551.ZHANG Yong, WANG Biao, LIU Xiaodong. Domestic research progress of sulfonated phenolic resin for drilling fluid[J]. Oilfield Chemistry, 2016, 33(3):547-551. [23] 许春田, 张瑞芳, 徐同台, 等. SMP-Ⅰ与SMP-Ⅱ的抗温抗盐性能对比[J]. 钻井液与完井液,2017,34(2):79-82. doi: 10.3969/j.issn.1001-5620.2017.02.014XU Chuntian, ZHANG Ruifang, XU Tongtai, et al. Comparison of performances of SMP-Ⅰ and SMP-Ⅱ at high temperature and in salt environment[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):79-82. doi: 10.3969/j.issn.1001-5620.2017.02.014 [24] 重庆威能钻井助剂有限公司. Q/WNZJ-042-2019. 钻井液用降滤失剂. 改性酚醛树脂[S]. 重庆: 重庆威能钻井助剂有限公司.Chongqing Weineng Drilling Additive Co. , Ltd. Q/WNZJ-042-2019. Fluid loss reducer for drilling fluid modified phenolic resin[S]. Chongqing: Chongqing Weineng Drilling Additive Co. , Ltd. [25] 罗跃, 张斌, 毛紫楠, 等. 钻井液用磺甲基酚醛树脂质量控制方法研究[J]. 油田化学,2009,26(2):115-117,127.LUO Yue, ZHANG Bin, MAO Zinan, et al. Research of quality control for sulfomethylated phenolic resin as drilling fluid additive[J]. Oilfield Chemistry, 2009, 26(2):115-117,127. [26] 詹平, 龚浩. 磺甲基酚醛树脂Ⅱ型的合成及性能测试[J]. 化工生产与技术,2009,16(4):28-30. doi: 10.3969/j.issn.1006-6829.2009.04.010ZHAN Ping, GONG Hao. Synthesis and property test on sulfomethyl-phenolic resin-Ⅱ[J]. Chemical Production and Technology, 2009, 16(4):28-30. doi: 10.3969/j.issn.1006-6829.2009.04.010 -