Mechanisms of Borehole Wall Instability of Deep Coal Seam in Ordos Basin and Drilling Fluid Countermeasures
-
摘要: 针对鄂尔多斯盆地深部煤层井壁失稳问题,从岩心矿物组分、微观结构、理化性能和力学性质等角度揭示了纳林1井区本溪组8#煤储层井壁失稳机理,发现煤岩的割理裂缝结构及碳质泥岩的易水化分散矿物含量高是导致井壁失稳的主要原因。结合“多元协同”井壁稳定理论,提出“封堵性+抑制性+润滑性”的三效协同防塌钻井液技术对策。通过优选关键抑制剂、封堵剂和润滑剂,形成了适用于纳林1井区本溪组的防塌钻井液体系,并从基本性能、封堵性、抑制性和压力传递能力等角度进行了综合评价。该防塌钻井液流变性能良好,API滤失量仅为2.4 mL,高温高压滤失量仅为7.5 mL;抑制能力强,滚动回收率大于90%,16 h线性膨胀率小于5%;封堵性能优良,400 μm开度裂缝的承压能力达到5 MPa。现场应用表明,新研制的防塌钻井液能有效抑制纳林1井区深部煤层坍塌,应用井段井径扩大率降低,机械钻速提高,无井下复杂事故发生,该套体系能够满足现场煤岩气钻井的需要,具有较好的推广应用前景。Abstract: In response to the problem of wellbore instability in deep coal seams in the Ordos Basin, the mechanism of wellbore instability in the 8# coal reservoir of the Benxi Formation in the Nalin 1 block was revealed from the perspectives of mineral analysis, microstructure analysis, physical-chemical properties and mechanical properties. Combined with the multiple synergy wellbore stability theory, a three-effect synergistic anti-sloughing drilling fluid technology strategy of plugging performance-inhibitive capacity-lubricity was proposed. By optimizing the key inhibitor, plugging agent and lubricant, an anti-sloughing drilling fluid system suitable for Benxi Formation in Nalin 1 block was formed. A comprehensive evaluation was conducted from the perspectives of basic performance, plugging property, inhibitory property, and pressure transmission ability. The laboratory test results show that the anti-sloughing drilling fluid formulation system had good rheological properties. The drilling fluid had API filtration rate of 2.4 mL, HTHP filtration rate of 7.5 mL, strong inhibitory ability. The percent recovery of shale cuttings was greater than 90%, 16 h linear swelling rate was less than 5%. The drilling fluid had excellent sealing performance. Plugging of 400 μm fractures with the drilling fluid renders the formation in which these fractures exist a pressure bearing capacity of 5 MPa. Field application has shown that the newly developed anti-collapse drilling fluid can effectively suppress the collapse of deep coal seams in the Nalin 1 well area, reduce the diameter expansion rate, increase the mechanical drilling rate, and prevent complex downhole accidents. It can meet the needs of coal and rock gas drilling on site and has good prospects for promotion and application.
-
表 1 煤岩/碳质泥岩的单轴抗压强度
岩性 单轴抗压强度/MPa 单轴弹性模量/GPa 泊松比 煤岩 13.17 22.32 0.42 7.95 24.86 0.41 8.49 23.47 0.42 碳质泥岩 21.34 20.08 0.38 20.34 21.41 0.41 24.29 19.32 0.35 表 2 煤岩/碳质泥岩的三轴抗压强度
岩性 围压/
MPa抗压强
度/
MPa弹性模
量/
GPa泊松比 内摩擦
角/(
°)内聚
力/
MPa煤岩 0 23.73 4.51 0.39 9.69 11.03 10 41.14 5.16 0.28 20 52.32 4.80 0.31 碳质泥岩 0 27.80 26.57 0.23 11.18 13.60 10 49.55 32.38 0.31 20 59.21 27.62 0.40 表 3 煤岩/碳质泥岩的单轴抗压强度
岩性 浸泡
介质浸泡
时间/h单轴抗压
强度/MPa单轴弹性
模量/GPa泊松比 煤岩 清水 6 10.75 15.45 0.35 12 9.37 15.34 0.25 24 8.88 13.45 0.41 钻井液 6 12.45 26.37 0.31 12 9.97 28.84 0.41 24 8.48 23.57 0.44 碳质
泥岩清水 6 22.57 29.28 0.48 12 25.35 26.33 0.39 24 21.35 24.15 0.42 钻井液 6 27.49 36.28 0.25 12 27.46 38.91 0.25 24 25.40 35.69 0.37 表 4 煤岩/碳质泥岩在不同液体浸泡后的三轴抗压强度
岩性 浸泡
介质t浸泡/
h围压/
MPa抗压
强度/
MPa弹性
模量/
GPa泊松
比内摩
擦角/
(°)内聚
力/
MPa煤岩 清水 6 10 36.10 5.25 0.27 15.27 7.24 20 53.25 6.31 0.34 12 10 32.37 4.89 0.30 13.76 6.33 20 48.61 6.18 0.29 24 10 26.44 4.52 0.24 13.24 4.16 20 42.38 5.85 0.37 钻井液 6 10 37.69 5.42 0.34 15.86 7.62 20 55.21 5.95 0.30 12 10 34.13 5.20 0.23 15.40 6.44 20 51.36 5.74 0.31 24 10 29.18 4.86 0.27 14.63 4.80 20 45.94 5.25 0.30 碳质
泥岩清水 6 10 42.27 22.74 0.30 11.67 11.08 20 57.34 20.63 0.34 12 10 38.20 18.38 0.36 9.78 10.16 20 52.29 17.12 0.27 24 10 34.77 15.20 0.33 8.75 9.08 20 48.36 15.96 0.37 钻井液 6 10 44.01 32.58 0.39 13.89 10.84 20 60.33 34.32 0.27 12 10 40.59 30.38 0.34 13.52 10.04 20 57.69 30.87 0.45 24 10 37.38 27.89 0.48 11.95 8.98 20 52.60 25.05 0.44 表 5 不同润滑剂润滑性测试结果(120 ℃、16 h)
配方 测定条件 黏附系数 润滑系数 现场钻井液 热滚前 0.198 0.218 热滚后 0.205 0.231 GRA 热滚前 0.061 0.073 热滚后 0.069 0.084 JM-1 热滚前 0.091 0.098 热滚后 0.098 0.105 RT101 热滚前 0.067 0.080 热滚后 0.072 0.086 SD-505 热滚前 0.143 0.157 热滚后 0.152 0.164 BZ-BL 热滚前 0.098 0.113 热滚后 0.105 0.126 表 6 防塌钻井液的基本性能
实验条件 ρ/
kg·L−1AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL老化前 1.40 37 23 14 3.5/8.0 2.0 7.5 老化后 1.40 39 24 15 3.5/7.5 2.4 表 7 防塌钻井液的抑制性能评价
钻井液体系 岩样 滚动回收率/% 16 h线性膨胀率/% 清水 煤岩 68.5 16.2 碳质泥岩 70.5 14.8 现场钻井液 煤岩 78.3 8.5 碳质泥岩 85.5 8.2 防塌钻井液 煤岩 93.1 4.5 碳质泥岩 94.2 4.1 表 8 防塌钻井液渗透性封堵性能评价
钻井液 石英砂粒径/目 滤液侵入深度/mm FL/mL 现场钻井液 40~60 18.2 0 60~80 16.9 0 防塌钻井液 40~60 12.4 0 60~80 10.5 0 表 9 防塌钻井液裂缝性封堵性能评价
钻井液 裂缝介质 t承压/min P/MPa 漏失量/mL 现场钻井液 200 μm裂缝盘 3 0 0 1 0 2 0 3 0 4 0 5 0 400 μm裂缝盘 3 0 0 1 0 2 10 3 25 4 穿透 防塌钻井液 200 μm裂缝盘 3 0 0 1 0 2 0 3 0 4 0 5 0 400 μm裂缝盘 3 0 0 1 0 2 0 3 0 4 5 5 12 -
[1] 邹才能, 杨智, 黄士鹏, 等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433-442. doi: 10.11698/PED.2019.03.02ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3):433-442. doi: 10.11698/PED.2019.03.02 [2] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115-130. doi: 10.12363/issn.1001-1986.22.06.0503XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos basin[J]. Coal Geology & Exploration, 2023, 51(1):115-130. doi: 10.12363/issn.1001-1986.22.06.0503 [3] 郭旭升, 胡宗全, 李双建, 等. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报,2023,8(4):461-474. doi: 10.3969/j.issn.2096-1693.2023.04.035GUO Xusheng, HU Zongquan, LI Shuangjian, et al. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata[J]. Petroleum Science Bulletin, 2023, 8(4):461-474. doi: 10.3969/j.issn.2096-1693.2023.04.035 [4] 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos basin and its enlightenment[J]. Coal Geology & Exploration, 2022, 50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823 [5] 王维, 韩金良, 王玉斌, 等. 大宁-吉县区块深层煤岩气水平井钻井技术[J]. 石油机械,2023,51(11):70-78.WANG Wei, HAN Jinliang, WANG Yubin, et al. Drilling technology for deep coal rock gas horizontal wells in Da'ning-Jixian block[J]. China Petroleum Machinery, 2023, 51(11):70-78. [6] 阎荣辉, 王京光, 何旺, 等. 鄂尔多斯盆地深层煤岩气井储层坍塌及伤害主控因素研究[J]. 钻采工艺,2023,46(6):8-13. doi: 10.3969/J.ISSN.1006-768X.2023.06.02YAN Ronghui, WANG Jingguang, HE Wang, et al. Study on the main controlling factors of reservoir collapse and damage in deep coal gas wells in Ordos basin[J]. Drilling & Production Technology, 2023, 46(6):8-13. doi: 10.3969/J.ISSN.1006-768X.2023.06.02 [7] 牛小兵, 赵伟波, 史云鹤, 等. 鄂尔多斯盆地本溪组天然气成藏条件及勘探潜力[J]. 石油学报,2023,44(8):1240-1257. doi: 10.7623/syxb202308004NIU Xiaobing, ZHAO Weibo, SHI Yunhe, et al. Natural gas accumulation conditions and exploration potential of Benxi formation in Ordos basin[J]. Acta Petrolei Sinica, 2023, 44(8):1240-1257. doi: 10.7623/syxb202308004 [8] 张建斌, 贾俊, 刘兆利. 长庆气田碳质泥岩防塌钻井液技术[J]. 钻井液与完井液,2018,35(3):68-73. doi: 10.3969/j.issn.1001-5620.2018.03.011ZHANG Jianbin, JIA Jun, LIU Zhaoli. Drilling fluid technology for preventing collapse of carbargilite formation in Changqing gas field[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):68-73. doi: 10.3969/j.issn.1001-5620.2018.03.011 [9] 王睿, 王兰. 川中震旦系灯影组井壁失稳机理及防塌钻井液技术[J]. 钻采工艺,2019,42(2):108-111. doi: 10.3969/J.ISSN.1006-768X.2019.02.30WANG Rui, WANG Lan. Mechanism of wellbore instability and anti collapse drilling fluid technology in the Dengying formation of the Sinian system in central Sichuan[J]. Drilling & Production Technology, 2019, 42(2):108-111. doi: 10.3969/J.ISSN.1006-768X.2019.02.30 [10] 孙金声,王韧,龙一夫,等. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.SUN Jinsheng, WANG Ren, LONG Yifu, et al. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30 [11] 叶成, 高世峰, 鲁铁梅, 等. 玛18井区水平井井壁失稳机理及强封堵钻井液技术研究[J]. 石油钻采工艺,2023,45(1):38-46.YE Cheng, GAO Shifeng, LU Tiemei, et al. Well instability mechanism and strong plugging drilling fluid technology of horizontal well in Ma 18 well block[J]. Oil Drilling & Production Technology, 2023, 45(1):38-46. [12] 林海, 陈磊, 张艺聪, 等. 宁武盆地4#和9#煤岩坍塌机理[J]. 钻井液与完井液,2014,31(5):14-17. doi: 10.3969/j.issn.1001-5620.2014.05.004LIN Hai, CHEN Lei, ZHANG Yicong, et al. Mechanism of collapse of coal and rock formations in Ningwu basin, 4#and 9#[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):14-17. doi: 10.3969/j.issn.1001-5620.2014.05.004 [13] 王艳. 多元协同井壁稳定水基钻井液研究[D]. 成都: 西南石油大学, 2016.WANG Yan. Research on multi element collaborative well wall stable water based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2016. [14] 李东平, 赵贤正, 王子毓, 等. 新型有机硅聚合物抑制封堵剂性能及作用机制[J]. 中国石油大学学报(自然科学版),2020,44(4):135-141.LI Dongping, ZHAO Xianzheng, WANG Ziyu, et al. Performance and mechanism of new silicone polymer for inhibitor and plugging agent[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4):135-141. [15] 陈晓华, 邱正松, 冯永超, 等. 鄂尔多斯盆地富县区块强抑制强封堵防塌钻井液技术[J]. 钻井液与完井液,2021,38(4):462-468. doi: 10.12358/j.issn.1001-5620.2021.04.010CHEN Xiaohua, QIU Zhengsong, FENG Yongchao, et al. An anti-collapse drilling fluid with strong inhibitive and plugging capacity for use in the Fuxian block in Ordos basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):462-468. doi: 10.12358/j.issn.1001-5620.2021.04.010 [16] 陈文可, 郑和, 龚厚平, 等. 中江区块沙溪庙组井壁失稳机理及烷基糖苷防塌钻井液[J]. 钻井液与完井液,2023,40(4):438-445.CHEN Wenke, ZHENG He, GONG Houping, et al. Mechanisms of borehole instability of the Shaximiao formation in block Zhongjiang and the anti-collapse alkyl glycoside drilling fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):438-445 -