Study on Desorption and Degradable Lotion Reducer
-
摘要: 针对浅层常压页岩气吸附气含量高,难以提高产量实现有效开采及常规聚合物降阻剂难以实现自然降解的问题,通过水相分散聚合合成无油相乳液型降阻剂。通过摩阻仪、磁悬浮天平等对降阻剂及其形成的降阻水体系进行性能评价,实验结果表明,利用该降阻剂配制的0.6%~1.0%降阻水体系实验室降阻率均达到70%以上,现场降阻率84%,解吸附实验结果表明产品解吸率达到85%,远超常规乳液降阻剂产品,具有较高的工程实用性,可以满足施工的要求;使用特性黏数法评价了降阻剂的自然降解能力,其在95 ℃下330 h能够实现自然降解,降解率达到86%,岩心伤害率远低于胍胶体系,IC50测试结果表明该降阻剂在使用浓度下无毒环保。为开发浅层常压页岩气提供了技术借鉴和新的产品思路。Abstract: In view of the high content of adsorbed gas in shallow normal-pressure shale gas, which is difficult to increase production and achieve effective exploitation, and the difficulty of natural degradation of conventional polymer drag reducer, oil-free lotion drag reducer was synthesized through aqueous dispersion polymerization. using friction meters, magnetic levitation balances, etc to evaluate the performance of drag reducr and their formed slick water systems The experimental results show that the laboratory resistance reduction rates of the 0.6% to 1.0% resistance reducing water system prepared with this resistance reducing agent are all above 70%, on site drag reduction rate of 84%. The desorption experiment results show that the desorption rate of the product reaches 85%, which is much higher than the conventional lotion drag reducer product. The natural degradation ability of the drag reducer was evaluated using the intrinsic viscosity method, and it was found that it can achieve natural degradation at 95 ℃ in 330 hours, with a degradation rate of 86%. The core damage rate is much lower than that of the guanidine gum system, and the IC50 test results show that the drag reducer is non-toxic and environmentally friendly at the concentration of use. This provides technical reference and new product ideas for the development of shallow atmospheric shale gas.
-
Key words:
- Reducer /
- Dispersed polymerization /
- Slick water /
- AM
-
表 1 降阻水对岩心基质伤害实验
降阻水 岩心基质渗透率/nD 伤害率/% 平均值/% 技术指标/% 伤害前 伤害后 1.0%乳液型降阻剂配制的降阻水 13.09 10.97 16.2 16.3 ≤20 表 2 低成本体系的性能表征
降阻剂/% η/mPa·s 表面张力/mN·m−1 防膨率/% 清水 1.00 72 0.00 0.5 1.01 65 15.96 0.6 1.36 63 21.28 0.8 1.82 67 31.91 1.0 2.98 59 47.87 表 3 降阻水体系的性能表征
降阻剂/% 未添加助排
剂的体系
表面张力/
mN·m−1表面张力/
mN·m−1界面张力/
mN·m−1降阻率/% 0.5 65 32 2.2 60 0.6 63 29 0.61 69 0.8 67 25 0.58 71 1.0 59 22 0.51 71 -
[1] 尹冰洁. 美国页岩革命及其影响[D]. 沈阳: 辽宁大学, 2017.YIN Bingjie. The American shale revolution and its impact[D]. Shenyang: Liaoning University, 2017. [2] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业,2021,41(1):1-14.ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14. [3] 聂海宽,何治亮,刘光祥,等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报,2020,49(1):13-35.NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1):13-35. [4] 杨秀夫,刘希圣,陈勉,等. 国内外水力压裂技术现状及发展趋势[J]. 钻采工艺,1998,21(4):21-25.YANG Xiufu, LIU Xisheng, CHEN Mian, et al. Status quo of hydraulic fracturing technique and its developing trend at home and abroad[J]. Drilling & Production Technology, 1998, 21(4):21-25. [5] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业,2021,41(8):121-142.ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8):121-142. [6] 吴育平,孙卫,雒斌,等. 鄂尔多斯盆地合水地区长81储层流动单元研究[J]. 非常规油气,2019,6(5):38-46. doi: 10.3969/j.issn.2095-8471.2019.05.006WU Yuping, SUN Wei, LUO Bin, et al. Rearch on the flow unit of Chang 81 reservoir in Heshui area, Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(5):38-46. doi: 10.3969/j.issn.2095-8471.2019.05.006 [7] 顾军锋,马磊,蒋红芬,等. 流动单元优选储层新方法[J]. 断块油气田,2015,22(6):752-755.GU Junfeng, MA Lei, JIANG Hongfen, et al. New method of applying flow-unit to optimize reservoir[J]. Fault-Block Oil and Gas Field, 2015, 22(6):752-755. [8] 李君君,王志章,王征,等. 扶余油田泉三段储层流动单元划分及应用[J]. 科技导报,2014,32(23):22-27.LI Junjun, WANG Zhizhang, WANG Zheng, et al. Division of reservoir flow units and its application to Fuyu Oilfield[J]. Science & Technology Review, 2014, 32(23):22-27. [9] 杨阳,刘慧卿,张萌,等. 一种适用于缝洞油藏的流动单元划分方法[J]. 数学的实践与认识,2018,48(22):97-106.YANG Yang, LIU Huiqing, ZHANG Meng, et al. A new method for flow units determination in frac-cave carbonate reservoir[J]. Mathematics in Practice and Theory, 2018, 48(22):97-106. [10] 马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发,2018,45(1):161-169.MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):161-169. [11] 云露. 四川盆地东南缘浅层常压页岩气聚集特征与勘探启示[J]. 石油勘探与开发,2023,50(6):1140-1149.YUN Lu. Accumulation characteristics and exploration Enlightenment of shallow normal-pressure shale gas in southeastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(6):1140-1149. [12] 向克满,史洪亮,王幸蒙,等. 川南地区深层页岩气储层特征及含气性主控因素[J]. 东北石油大学学报,2023,47(3):44-55.XIANG Keman, SHI Hongliang, WANG Xingmeng, et al. Reservoir characteristics and main controlling factors of gas content of deep shale gas in Southern Sichuan Basin[J]. Journal of Northeast Petroleum University, 2023, 47(3):44-55. [13] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业,2018,38(10):1-10.MA Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10):1-10. [14] 申军, 方道斌, 杨益. GB/T 12005.10-1992. 聚丙烯酰胺分子量测定黏度法[S]. 北京: 中国标准出版社, 1993.SHEN Jun, FANG Daobin, YANG Yi. GB/T 12005.10-1992. Determination for molecular weight of polyacrylamide by viscometry[S]. Beijing: Standards Press of China, 1993. [15] 黑龙江大学. GB/T 12005.1-1989. 聚丙烯酰胺特性黏数测定方法[S]. 北京: 中国标准出版社, 1989.Heilongjiang University. GB/T 12005.1-1989. Determination for limiting viscosity number of polyacrylamide[S]. Beijing: Standards Press of China, 1989. [16] 伊向艺. 煤层气压裂技术及应用[M]. 北京: 石油工业出版社, 2012.YI Xiangyi. Coal seam pressure fracturing technology and its application[M]. Beijing: Petroleum industry press, 2012. [17] 杨秀春,李明宅. 煤层气排采动态参数及其相互关系[J]. 煤田地质与勘探,2008,36(2):19-23.YANG Xiuchun, LI Mingzhai. Dynamic parameters of CBM well drainage and relationship among them[J]. Coal Geology & Exploration, 2008, 36(2):19-23. [18] 康永尚,邓泽,刘洪林. 我国煤层气井排采工作制度探讨[J]. 天然气地球科学,2008,19(3):423-426.KANG Yongshang, DENG Ze, LIU Honglin. Discussion about the CBM well draining technology[J]. Natural Gas Geoscience, 2008, 19(3):423-426. [19] 刘静,王亚娟,吕海燕,等. 利用固氮酶提高煤层气采收率技术[J]. 国外油田工程,2009,25(11):13-15.LIU Jing, WANG Yajuan, LYU Haiyan, et al. Enhanced Coal Bed Methane Recovery Using Nitrogenase Enzyme[J]. Foreign Oil Field Engineering, 2009, 25(11):13-15. [20] 崔思华,管保山,张遂安,等. 煤岩储层伤害机理及评价方法[J]. 中国煤层气,2012,9(3):38-41.CUI Sihua, GUAN Baoshan, ZHANG Suian, et al. Mechanism of coal & rocks reservoirs and evaluation methods[J]. China Coalbed Methane, 2012, 9(3):38-41. [21] 张高群,肖兵,胡娅娅,等. 新型活性水压裂液在煤层气井的应用[J]. 钻井液与完井液,2013,30(1):66-68. doi: 10.3969/j.issn.1001-5620.2013.01.018ZHANG Gaoqun, XIAO Bing, HU Yaya, et al. Applicafion on Novel Active Water Fracturing Fluid in Coal-bed Methane Wells[J]. Drilling Fluid & Completion Fluid, 2013, 30(1):66-68. doi: 10.3969/j.issn.1001-5620.2013.01.018 [22] QU H Y, LIU J S, CHEN Z W, et al. Complex evolution of coal permeability during CO2 injection under variable temperatures[J]. International Journal of Greenhouse Gas Control, 2012, 9:281-293. doi: 10.1016/j.ijggc.2012.04.003 [23] MORALES D, GUTIE´RREZ M J, GARCI´A-CELMA J M, et al. A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation[J]. Langmuir, 2003, 19(18):7196-7200. doi: 10.1021/la0300737 [24] CRAFTON W J, PENNY G, BURKETT B, et al. The effect of micro-emulsion on high and low gor gas wells[C]//Paper presented at the SPE Tight Gas Completions Conference, San Antonio, Texas, USA, 2009: SPE-125248-MS. [25] CHAMPAGNE L M, ZHOU H, ZELENEV A S, et al. The impact of complex nanofluid composition on enhancing regained permeability and fluid flowback from tight gas formation and proppeded fractures[C]//Paper presented at the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2012: SPE-151845-MS. -