An Ultra-High Temperature High Density Corrosion Inhibitive Anti-Channeling Cement Slurry
-
摘要: 南海西部油田高温高压储层是南海万亿大气田的主力产区,乐东某区块目的层温度达210 ℃、压力系数为2.20~2.29、压力窗口仅为0.04~0.05,且存在CO2等腐蚀气体,勘探开发难度极大,其中超高温高密度防腐防窜水泥浆体系的研发是制约气田开发的关键技术之一。针对上述复杂井况,以还原铁粉、锰矿粉、不同目数硅粉等进行颗粒级配作为固相材料,以低活性MgO为晶格膨胀剂防止水泥环回缩,以特种胶乳为防腐、防气窜材料,以有机、无机插层聚合物为高温悬浮稳定剂等构建了耐温达220 ℃、防环空气窜、防CO2腐蚀的超高密度2.40~2.60 g/cm3水泥浆体系。室内评价结果表明,在CO2分压为50%、养护压力为100 MPa、养护温度为180~220 ℃的腐蚀条件下,腐蚀180 d后,抗压强度增加明显,是腐蚀前的3倍左右,渗透率略增加(<0.01 mD),水化产物由腐蚀前的硬硅钙石C6S6H转变为CaCO3、SiO2。220 ℃养护24 h后的抗压强度大于25 MPa,SPN值不大于0.5,稠化时间易调节,下灰时间不大于40 s,水泥石上下密度差小于0.01,满足现场施工要求。Abstract: The oilfield in the west of the South China Sea, in which high temperature high pressure gas reservoirs are drilled, is a main gas production area. In this oilfield the formation temperature of the target zone in the Ledong area is 210 ℃, the formation pressure coefficient 2.20-2.29 and the safe pressure window only 0.04-0.05. These formation characteristics together with the existence of CO2 in the same target zone make it difficult for the energy to be explored and developed. One of the key technologies for the gas development in this area is the development of a corrosion-resistant cement slurry for use in ultra-high temperature high pressure environment. To efficiently develop the gas resource, a cement slurry, having its densities ranging between 2.40 g/cm3 and 2.60 g/cm3 and with CO2 corrosion resistance is developed. In this cement slurry, a reduced iron powder, a manganese ore powder and a silica of different particle sizes are sized and used as the solid material, a low activity MgO as the lattice swelling agent to prevent shrinkage of the cement sheath, a special latex as the corrosion inhibitor and anti-channeling agent, and an organic and an inorganic intercalated polymers as the high temperature suspending stabilizer. Laboratory evaluation experiment shows that under CO2 partial pressure of 50%, aging pressure of 100 MPa and aging temperature of 180-220 ℃, the compressive strength of the set cement after being corroded for 180 d is three times of the compressive strength of the set cement before being corroded. At the same time, the permeability of the set cement is only slightly increased (<0.01 mD). The hydration products of the cement change from C6S6H, an xonotlite before corrosion of the set cement, to CaCO3 and SiO2 after corrosion. The set cement, after being aged at 220 ℃ for 24 h, has compressive strength of greater than 25 MPa, and SPN value of less than or equal to 0.5. The thickening time of the cement slurry is easy to adjust, the cement is easy to flow, and the difference between the density of the slurry at the bottom and that of the slurry at the top is less than 0.01. These properties of the cement satisfy the requirements of the field operation.
-
表 1 不同加重剂对水泥浆性能的影响
加重剂 ρ加重剂/
g/cm3下灰时间/s
(4000 r/min)p24 h/
MPa
220 ℃、
21 MPa旋转黏度计
转速(90 ℃)/
(r/min)200目
赤铁矿粉4.90 75 29.9 >300(φ300)
1200目
赤铁矿粉4.90 120未下完 30.5 >300(φ200) 还原铁粉 7.20 38 25.9 221(φ300) 锰矿粉 4.85 53 32.1 291(φ300) API重晶石 4.30 120未下完 31.0 >300(φ100) 30%锰矿粉+
95%还原铁粉6.45 30 27.9 277(φ300) 注:水泥浆配方100%SD-G+0.5%DF66L+4%R42L+2%F45L+7%FL80L+8%GR7+2%SA56L+加重剂+20%100目硅粉+30%800目硅粉+3%B30S+F/W ,密度为2.50 g/cm3。 表 2 锰矿粉与还原铁粉复配在不同养护龄期下的抗压强度
锰矿粉/
%还原铁粉/
%p24 h/
MPap20 d/
MPaP34 d/
MPaSVF/
%下灰
时间/s0 100 25.9 23.5 51 38 30 95 27.9 28.6 29.4 51 30 50 87 26.2 32.2 30.8 51 45 100 66 27.8 32.7 34.5 51 55 注:水泥浆配方100%SD-G+0.5%DF66L+4%R42L+2%F45L+7%FL80L+8%GR7+2%SA56L+加重剂+20%100目硅粉+30%800目硅粉+3%B30S+F/W ,密度为2.50 g/cm3。 表 3 超高温高密度防腐防窜水泥浆体系基本性能
配方 SVF/
%t下灰/
sφ300/φ200/φ100/φ6/φ3 FLAPI/
mLΔρ/
g·cm−3p24 h/
MPa1# 50.8 38 270/198/121/17/11 30.6 0.010 29.1 2# 49.5 35 291/206/118/12/7 34.8 0.025 26.4 3# 51.0 30 271/191/115/16/10 32.0 0.006 32.9 4# 51.9 40 288/190/111/17/12 24.2 0.010 31.6 表 4 不同温度对稠化时间的影响(2.50 g/cm3)
T测试/ ℃ R42L/g t稠化/min 190 20 375 200 20 307 210 20 252 表 5 不同配方的SPN值及弹性模量
水泥浆 t稠化/min t过渡/min SPN值 弹性模量/GPa 1# 292 2 0.33 8.5 2# 268 5 0.98 10.4 3# 307 3 0.50 8.1 4# 249 3 0.42 7.6 表 6 不同腐蚀龄期下的抗压强度变化结果 MPa
配方 腐蚀前 腐蚀7 d
(180 ℃)腐蚀7 d
(220 ℃)腐蚀180 d
(180 ℃)腐蚀180 d
(220 ℃)1# 34.4 81.6 78.6 68.3 115.5 2# 28.4 73.6 66.4 63.6 99.8 3# 32.8 75.5 69.1 71.0 110.4 4# 29.1 70.0 67.4 99.2 133.1 表 7 不同腐蚀龄期下的渗透率变化 mD
配方 腐蚀前 腐蚀7 d
(180 ℃)腐蚀7 d
(220 ℃)腐蚀180 d
(180 ℃)腐蚀180 d
(220 ℃)1# <0.001 0.002 0.003 0.006 0.003 2# <0.001 0.009 0.006 0.005 0.033 3# <0.001 0.004 0.005 0.006 0.004 4# <0.001 0.006 0.004 0.004 0.005 -
[1] 李中, 刘书杰, 李炎军, 等. 南海高温高压钻完井关键技术及工程实践[J]. 中国海上油气,2017,29(6):100-107.LI Zhong, LIU Shujie, LI Yanjun, et al. Key technology and practice of HTHP well drilling and completion in South China Sea[J]. China Offshore Oil and Gas, 2017, 29(6):100-107. [2] 武治强, 岳家平, 谢仁军, 等. 南海超高温耐腐蚀防气窜固井水泥浆体系研究[J]. 石油化工应用,2021,40(9):47-51,69. doi: 10.3969/j.issn.1673-5285.2021.09.010WU Zhiqiang, YUE Jiaping, XIE Renjun, et al. Study on ultra high temperature anti corrosion cement slurry system in South China Sea[J]. Petrochemical Industry Application, 2021, 40(9):47-51,69. doi: 10.3969/j.issn.1673-5285.2021.09.010 [3] 杨红歧, 陈会年, 邓天安, 等. 元坝气田超深探井小尾管防气窜固井技术[J]. 石油钻采工艺,2020,42(5):592-599.YANG Hongqi, CHEN Huinian, DENG Tianan, et al. The anti-gas channeling small-linercementing technology for ultra deep exploration wells of Yuanba Gasfield[J]. Oil Drilling & Production Technology, 2020, 42(5):592-599. [4] 罗翰, 何世明, 罗德明. 川深1井超高温高压尾管固井技术[J]. 石油钻探技术,2019,47(4):17-21. doi: 10.11911/syztjs.2019094LUO Han, HE Shiming, LUO Deming. Ultra-high temperature and high pressure liner cementing technology in well Chuanshen 1[J]. Petroleum Drilling Techniques, 2019, 47(4):17-21. doi: 10.11911/syztjs.2019094 [5] 马疆, 苏洪生, 徐新纽, 等. 准噶尔盆地南缘深井、超深井超高温超高密度水泥浆体系研究及应用[J]. 新疆石油天然气,2021,17(3):18-24. doi: 10.3969/j.issn.1673-2677.2021.03.005MA Jiang, SU Hongsheng, XU Xinniu, et al. Study and application of ultra-high temperature and ultra-high density cement slurry system in deep and ultra-deep wells at southern margin of Junggar basin[J]. Xinjiang Oil & Gas, 2021, 17(3):18-24. doi: 10.3969/j.issn.1673-2677.2021.03.005 [6] 于永金, 夏修建, 王治国, 等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and Ultra-Deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2):24-33. doi: 10.12388/j.issn.1673-2677.2023.02.003 [7] 王敬朋, 熊友明, 路宗羽, 等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634-640.WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):634-640. [8] 陈超, 王龙, 李鹏飞, 等. SN井区抗高温液硅-胶乳防气窜水泥浆[J]. 钻井液与完井液,2016,33(5):88-91.CHEN Chao, WANG Long, LI Pengfei, et al. HTHP anti-channeling liquid silica latex cement slurry used in block SN[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):88-91. [9] 李斐, 路飞飞, 胡文庭. 超深超高温裂缝性气藏固井水泥浆技术[J]. 石油钻采工艺,2019,41(1):38-42.LI Fei, LU Feifei, HU Wenting. Cementing slurry technology for ultra-deep and ultra-high temperature fractured gas reservoir[J]. Oil Drilling & Production Technology, 2019, 41(1):38-42. [10] BARLET G V, CAMBUS C, DANICAN S, et al. Cement compositions for high temperature applications: US Patent 7459019[P]. 2023-02-14. [11] 卢海川, 朱海金, 李宗要, 等. 水泥浆悬浮剂研究进展[J]. 油田化学,2014,31(2):307-311.LU Haichuan, ZHU Haijin, LI Zongyao, et al. Review on suspending agents for cement slurry[J]. Oilfield Chemistry, 2014, 31(2):307-311. [12] 朱达江. 气井环空带压机理研究[D]. 成都: 西南石油大学, 2014.ZHU Dajiang. Research on mechanism of sustained casing pressure in gas wells[D]. Chengdu: Southwest Petroleum University, 2014. [13] 陆沛青, 桑来玉, 谢少艾, 等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术,2019,47(1):52-58. doi: 10.11911/syztjs.2018141LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latexcement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1):52-58. doi: 10.11911/syztjs.2018141 [14] 孙刚, 曹丰泽, 廖易波, 等. 高温高压环境中 MgO 膨胀剂的性能与作用机理[J]. 硅酸盐学报,2021,49(8):1683-1690.SUN Gang, CAO Fengze, LIAO Yibo, et al. Behavior and expanding mechanism of MgO expansive agent at high temperature and high pressure[J]. Journal of the Chinese Ceramic Society, 2021, 49(8):1683-1690. [15] 赵军, 徐璧华, 邱汇洋, 等. 抗高温防CO2和H2S腐蚀水泥浆体系研发与应用[J]. 中国海上油气,2017,29(3):91-94.ZHAO Jun, XU Bihua, QIU Huiyang, et al. Research and application of a heat-resisting and anti CO2 and H2S corrosion cement slurry[J]. China Offshore Oil and Gas, 2017, 29(3):91-94. [16] RAUT H K, SCHWARTZMAN A F, DAS R, et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre[J]. ACS Nano, 2020, 14(8):9771-9779. doi: 10.1021/acsnano.0c01511 -