Lithium Salt-Sulfoaluminate Slurry System for Negative Temperature Cementing
-
摘要: 针对负温环境下固井常用水泥石强度发展缓慢甚至停止水化的问题,对锂盐(TSL)-硫铝酸盐水泥(SAC)浆体系开展了浆体性能及在4 ℃&-10 ℃下的水泥石力学性能研究,测试了水泥的水化温升及累计放热量。通过X射线衍射仪(XRD)、热重分析仪(TG/DTG)和扫描电子显微镜(SEM)对水泥的水化过程进行了分析,论证了TSL-SAC水泥浆体系在负温固井工程中应用的可行性。结果表明:TSL-SAC水泥浆体系浆体性能较好,在TSL掺量为SAC的3%时,在4 ℃环境下,48 h抗压强度可达23.01 ± 0.47 MPa,在-10 ℃环境下,48 h抗压强度可达3.98 ± 0.07 MPa,满足固井施工要求。同时,通过引入温控材料有效降低了水泥的水化温升及累计放热量,最大水化温升降低了27.62%,最大水化温升延迟320.67%出现。TSL促进SAC水化反应进行的机制在于增加了水泥石中凝胶态水化产物铁胶及铝胶的生成量,促进了AFt的生长结晶,形成低结晶度的CaCO3保护层并减少CH被碳化。实验结果表明,TSL-SAC水泥浆体系具备在负温固井环境下应用的潜力。Abstract: Aiming at the problem that the strength of cement pastes commonly used in cementing under negative temperature environment develops slowly or even stops hydration, this paper studies the slurry properties of lithium salt (TSL) -sulfoaluminate cement (SAC) slurry system and the mechanical properties of cement stone at 4 ℃ and -10 ℃, and tests the hydration temperature rise and cumulative heat release of cement. The hydration process of cement was analyzed by X-ray diffractometer (XRD), thermogravimetric analyzer (TG/DTG) and scanning electron microscope (SEM), and the feasibility of application of TSL-SAC cement system in negative temperature cementing project was demonstrated. The results show that the slurry performance of TSL-SAC cement slurry system is well. When the content of TSL is 3% of SAC, the 48 h compressive strength can reach 23.01 ± 0.47 MPa at 4 ℃ and 3.98 ± 0.07 MPa at -10 ℃, which meets the requirements of cementing construction. At the same time, the hydration temperature rise and cumulative heat release of cement were effectively reduced by the introduction of temperature control materials. The maximum hydration temperature rise was reduced by 27.62%, and the maximum hydration temperature rise delay was 320.67%. The mechanism of TSL promoting the hydration reaction of SAC is that it increases the generation of gel hydration products of iron glue and aluminum glue in cement stone, promotes the growth and crystallization of AFt, forms a low crystallinity CaCO3 protective layer and reduces the carbonization of CH. TSL-SAC cement slurry has the potential of application in negative temperature cementing environment, and this study provides a certain experimental and theoretical basis for cementing in negative temperature area.
-
Key words:
- Low temperature /
- Sulphoaluminate cement /
- Lithium salt /
- Mechanical properties /
- Hydration mechanism
-
表 1 SAC化学组成
成份 Al2O3 SiO2 SO3 CaO Fe2O3 MgO Others 含量/% 32.52 5.54 9.91 40.39 8.03 1.30 2.10 表 2 TSL掺量为3%的SAC水泥石和纯SAC水泥石的应力-应变曲线指标变化率的对比
组别 峰值应力
变化率/%峰值应变
变化率/%弹性模量
变化率/%SAC-3TSL-24 h +97.89 +7.74 +52.97 SAC-3TSL-48 h +77.04 +11.04 +64.35 SAC-3TSL-72 h +130.21 +9.40 +106.13 -
[1] CAI J X, ZHANG C M, ZENG L, et al. Preparation and action mechanism of temperature control materials for low-temperature cement[J]. Construction and Building Materials, 2021, 312:125364. doi: 10.1016/j.conbuildmat.2021.125364 [2] HUO J H, PENG Z G, FENG Q, et al. Controlling the heat evaluation of cement slurry system used in natural gas hydrate layer by micro-encapsulated phase change materials[J]. Solar Energy, 2018, 169:84–93. doi: 10.1016/j.solener.2018.04.035 [3] CAI J X, ZHOU J H, LIU C, et al. Microencapsulated phase change material-cement composites for cementing the natural gas hydrate layer[J]. Construction and Building Materials, 2023, 399:132591. doi: 10.1016/j.conbuildmat.2023.132591 [4] XU Y D, HE T S, YANG R H, et al. New insights into the impact of inorganic salt on cement pastes mixed with alkali free liquid accelerator in low temperature[J]. Journal of Building Engineering, 2023, 70:106419. doi: 10.1016/j.jobe.2023.106419 [5] 王建东, 屈建省, 高永会. 国外深水固井水泥浆技术综述[J]. 钻井液与完井液,2005,22(6):54-56,61. doi: 10.3969/j.issn.1001-5620.2005.06.016WANG Jiandong, QU Jiansheng, GAO Yonghui. The review of deep sea cementing slurry technology abroad[J]. Drilling Fluid & Completion Fluid, 2005, 22(6):54–56,61. doi: 10.3969/j.issn.1001-5620.2005.06.016 [6] 王胜, 谌强, 袁学武, 等. 适用于低温地层的纳米复合水泥浆体系研究[J]. 石油钻探技术,2021,49(6):73-80. doi: 10.11911/syztjs.2021009WANG Sheng, CHEN Qiang, YUAN Xuewu, et al. Research on a Nano-Composite cement slurry system suitable for Low-Temperature formations[J]. Petroleum Drilling Techniques, 2021, 49(6):73–80. doi: 10.11911/syztjs.2021009 [7] ZHANG C M, CAI J X, CHENG X W, et al. Interface and crack propagation of cement-based composites with sulfonated asphalt and plasma-treated rock asphalt[J]. Construction and Building Materials, 2020, 242:118161. doi: 10.1016/j.conbuildmat.2020.118161 [8] ZHANG C M, CAI J X, XU H, et al. Mechanical properties and mechanism of wollastonite fibers reinforced oil well cement[J]. Construction and Building Materials, 2020, 260:120461. doi: 10.1016/j.conbuildmat.2020.120461 [9] 龚建清, 郭万里, 龚啸, 等. 碳酸锂与纳米碳酸钙对UHPC早期力学性能的影响[J]. 硅酸盐通报,2020,39(11):3463-3472.GONG Jianqing, GUO Wanli, GONG Xiao, et al. Effects of Lithium carbonate and Nano-Calcium carbonate on early mechanical properties of UHPC[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11):3463–3472. [10] 李东文, 赵光明, 刘之喜, 等. 单轴压缩下岩石全应力应变过程中能量演化特征[J]. 煤矿安全,2023,54(2):135-144.LI Dongwen, ZHAO Guangming, LIU Zhixi, et al. Characteristics of energy evolution during total stress-strain in rocks under uniaxial compression[J]. Safety in Coal Mines, 2023, 54(2):135–144. [11] 张景富, 林波, 王珣, 等. 单轴应力条件下水泥石强度与弹性模量的关系[J]. 科学技术与工程,2010,10(21):5249-5253,5256. doi: 10.3969/j.issn.1671-1815.2010.21.030ZHANG Jingfu, LIN Bo, WANG Xun, et al. Relationship between compressive strength and elasticity modulus of cement stone under monopodium stress[J]. Science Technology and Engineering, 2010, 10(21):5249–5253,5256. doi: 10.3969/j.issn.1671-1815.2010.21.030 [12] 张凯建, 肖建庄, 张青天. 海水海砂再生混凝土单轴受压应力-应变全曲线[J]. 同济大学学报(自然科学版),2021,49(12):1738-1745. doi: 10.11908/j.issn.0253-374x.21085ZHANG Kaijian, XIAO Jianzhuang, ZHANG Qingtian. Complete stress-strain curves of seawater sea sand recycled aggregate concrete under uniaxial compression[J]. Journal of Tongji University(Natural Science), 2021, 49(12):1738–1745. doi: 10.11908/j.issn.0253-374x.21085 [13] 朱鹏, 李卓宣, 贾奇浩, 等. 再生微粉活性粉末混凝土单轴受压全曲线研究[J/OL]. 结构工程师. (2023-05-29)[2023-11-25]. https://link.cnki.net/doi/10.15935/j.cnki.jggcs.20230526.001.ZHU Peng, LI Zhuoxuan, JIA Qihao, et al. Study on full curve of Uniaxial compression of regenerated activated powder concrete[J]. Structural Engineer. (2023-05-29)[2023-11-25]. https://link.cnki.net/doi/10.15935/j.cnki.jggcs.20230526.001. [14] 孟双, 宋建建, 许明标, 等. 新型低温固井早强剂性能研究[J]. 钻井液与完井液,2023,40(1):96-102. doi: 10.12358/j.issn.1001-5620.2023.01.013MENG Shuang, SONG Jianjian, XU Mingbiao, et al. Study on the performance of a new low temperature early strength agent for well cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):96–102. doi: 10.12358/j.issn.1001-5620.2023.01.013 [15] 田野, 符军放, 宋维凯, 等. 一种新型超深水低温早强剂[J]. 钻井液与完井液,2019,36(2):224-228. doi: 10.3969/j.issn.1001-5620.2019.02.016TIAN Ye, FU Junfang, SONG Weikai, et al. A new low temperature early strength agent for ultradeep water operation[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):224–228. doi: 10.3969/j.issn.1001-5620.2019.02.016 [16] 郭永宾, 李中, 刘和兴, 等. 低温早强低水化放热水泥浆体系开发[J]. 钻井液与完井液,2019,36(4):500-505. doi: 10.3969/j.issn.1001-5620.2019.04.019GUO Yongbin, LI Zhong, LIU Hexing, et al. Development of a low temperature early strength cement slurry with low exothermic heat of hydration[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):500–505. doi: 10.3969/j.issn.1001-5620.2019.04.019 [17] 宋建建, 许明标, 王晓亮, 等. 新型相变材料对低热水泥浆性能的影响[J]. 钻井液与完井液,2019,36(2):218-223. doi: 10.3969/j.issn.1001-5620.2019.02.015SONG Jianjian, XU Mingbiao, WANG Xiaoliang, et al. The effects of a new phase change material on the properties of low heat cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):218–223. doi: 10.3969/j.issn.1001-5620.2019.02.015 [18] 白建飞, 张俊杰, 马保国, 等. 硅酸盐水泥-硫铝酸盐水泥水化及早强剂机理[J]. 武汉理工大学学报,2020,42(11):21-25.BAI Jianfei, ZHANG Junjie, MA Baoguo, et al. Research on the hydration and early strength characteristics of portland cement-sulphoaluminate cement[J]. Journal of Wuhan University of Technology, 2020, 42(11):21–25. [19] 丁向群, 赵欣悦, 徐晓婉, 等. 矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系性能的影响[J]. 新型建筑材料,2020,47(3):40-44. doi: 10.3969/j.issn.1001-702X.2020.03.011DING Xiangqun, ZHAO Xinyue, XU Xiaowan, et al. Effect of admixtures on properties of sulphoaluminate cement-common Portland cement composite system[J]. New Building Materials, 2020, 47(3):40–44. doi: 10.3969/j.issn.1001-702X.2020.03.011 [20] 刘丽丽. 碳酸锂对硫铝酸盐水泥基修补砂浆早期性能的影响[J]. 价值工程,2022,41(17):71-73. doi: 10.3969/j.issn.1006-4311.2022.17.023LIU Lili. Study on early strength of Lithium carbonate reinforced sulphoaluminate cement-based repair mortar[J]. Value Engineering, 2022, 41(17):71–73. doi: 10.3969/j.issn.1006-4311.2022.17.023 [21] 韩建国, 阎培渝. 碳酸锂对硫铝酸盐水泥水化特性和强度发展的影响[J]. 建筑材料学报,2011,14(1):6-9. doi: 10.3969/j.issn.1007-9629.2011.01.002HAN Jianguo, YAN Peiyu. Influence of Lithium carbonate on hydration characteristics and strength development of sulphoaluminate cement[J]. Journal of Building Materials, 2011, 14(1):6–9. doi: 10.3969/j.issn.1007-9629.2011.01.002 [22] 谭波, 王静, 明阳, 等. 碳酸锂和超细矿物掺合料对快硬硫铝酸盐水泥性能的影响[J]. 科学技术与工程,2023,23(8):3432-3437. doi: 10.12404/j.issn.1671-1815.2023.23.08.03432TAN Bo, WANG Jing, MING Yang, et al. Effects of lithium carbonate and ultrafine mineral admixture on the performance of fast-hardening sulfoaluminate cement[J]. Science Technology and Engineering, 2023, 23(8):3432–3437. doi: 10.12404/j.issn.1671-1815.2023.23.08.03432 [23] 扶庭阳. 超早强硫铝酸盐水泥基材料研究与应用[D]. 烟台: 烟台大学, 2017.FU Tingyang. Research and application of ultra high early strength sulphoaluminate cement-based materials[D]. Yantai: Yantai University, 2017. [24] 王敬宇. 负温条件下硫铝酸盐水泥水化及性能的研究[D]. 北京: 中国建筑材料科学研究总院, 2020.WANG Jingyu. Hydration and properties of sulfoaluminate cement under minus temperature[D]. Beijing: China Building Materials Academy, 2020. [25] 蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州: 广州大学, 2022.MENG Shaoqiang. Study on the effect nanomaterials on cement hydration[D]. Guangzhou: Guangzhou University, 2022. [26] 范白涛,武治强,张党生. CO2 液相及气相下铝酸盐水泥石强度发展规律[J]. 钻井液与完井液,2022,39(1):59-64.FAN Baitao, WU Zhiqiang, ZHANG Dangsheng. Development of strength of set aluminate cement in liquid and gaseous CO2 environment[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):59–64 [27] 郭华,马倩芸,武治强,等. 高炉矿渣改性铝酸盐水泥材料腐蚀机理与性能[J]. 钻井液与完井液,2022,39(2):221-226.GUO Hua, MA Qianyun, WU Zhiqiang, et al. Research on the effect of blast furnace slag on low-temperature hydration characteristics and high-temperature mechanical properties of aluminate cement[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):221–226 [28] 万向臣,张健,王文斌. 页岩油原位转化工况下微硅复合六偏磷酸钠改性铝酸盐水泥石性能评价[J]. 钻井液与完井液,2023,40(5):644-651.WAN Xiangchen, ZHANG Jian, WANG Wenbin. The performance of set aluminate cement modified by micro silica compounded sodium hexametaphosphate under condition of shale oil in-situ conversion[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):644–651 [29] 张磊, 武广瑷, 武治强, 等. 高酸性气体对硫铝酸盐水泥石腐蚀作用机理[J]. 石油钻采工艺,2023,45(4):432-440.ZHANG Lei , WU Guangai, WU Zhiqiang , et al. Corrosion mechanisms of sulfoaluminate cement by highly sour gas[J]. Oil Drilling & Production Technology, 2023, 45(4):432–440 [30] 万向臣, 张健, 陈小荣. 页岩油地层固井用改性铝酸盐水泥的水化行为及性能[J]. 油田化学,2023,40(4):614-620,626.WAN Xiangchen,ZHANG Jian,CHEN Xiaorong,et al. Hydration behavior and properties of modified aluminate cement for well cementing in shale oil formation[J]. Oilfield Chemistry, 2023, 40(4):614–620,626 -