An All-Liquid Spacer for LAS System
-
摘要: 固井施工过程中,在注入水泥浆前,需要先泵入一定量的隔离液,在海洋固井现场施工作业过程中,隔离液配制一般需要繁重的人工劳作,劳动强度大,作业效率低,加量不准确。为解决上述问题,用液体添加剂代替固体添加剂,通过LAS材料添加系统将材料混配作业,从传统的重体力劳动转化为智能化操作,降低作业强度,提高固井作业效率与降低人员成本。通过反相乳液聚合制备了一种液体隔离剂C-S70L,以它为主剂,构建了一套适用于液体加料系统(LAS)的隔离液体系。该体系推荐使用温度为20~120 ℃,适用密度为1.30~1.70 g/cm3;具有良好的悬浮稳定性(热滚后无沉降)、流变可调、失水可控以及相容性好的特点。Abstract: In well cementing operation, a certain amount of spacer needs to be pumped into the wellbore before injecting cement slurries. In offshore well cementing, the preparation of spacer requires heavy manual labor, and the labor intensity is quite high, resulting in low operation efficiency and poor control on the quantities of the spacer additives. To solve this problem, liquid additives are used to replace the solids additives in formulating the spacer, and the liquid additives are added through the additive addition system LAS. Using this technique, the traditional heavy physical labor in formulating a spacer is replaced with intelligent operation, the labor intensity is lowered, the efficiency of well cementing operation is increased, and the labor costs are reduced. A liquid spacer additive C-S70L is prepared through inverse emulsion polymerization. Using C-S70L as the core additive, a spacer suitable for injection using the LAS is formulated. This spacer can be used in temperature range of 20 - 120 °C and density range of 1.30 – 1.70 g/cm3. It has good suspending stability (no settling after hot rolling), a rheology that is easy to adjust, a fluid loss that is controllable and good compatibility.
-
Key words:
- Well cementing /
- Compatibility /
- Settling stability /
- Spacer /
- LAS /
- Inverse emulsion polymerization
-
表 1 液体隔离剂C-S70L的分子量和分子量分布
样品
名称数均分子
量Mn(kDa)不确
定度重均分子
量MW(kDa)不确
定度分子量分布
(Mw/Mn)C-S70L 515.5 1.3% 1474.2 1.3% 2.86 表 2 C-S70L不同加量下1.3 g/cm3隔离液的流变性能
C-S70L/
%T/
℃流变读数 φ3 φ6 φ100 φ200 φ300 φ600 1.50 25 6 9 48 71 89 132 1.75 25 7 10 55 81 101 147 2.00 25 10 13 65 95 118 164 2.25 25 11 17 79 113 139 192 2.50 25 13 17 80 115 142 196 表 3 不同密度隔离液在不同温度下流变性能
ρ/
g·cm−3T/
℃流变读数 φ3 φ6 φ100 φ200 φ300 φ600 1.30 25 10 13 65 95 118 164 90 6 8 35 50 62 88 120 3 4 20 31 40 59 1.50 25 11 15 73 106 135 192 90 7 9 43 63 77 110 120 5 7 35 51 68 99 1.70 25 13 19 93 135 167 238 90 10 14 79 125 154 201 120 7 11 54 81 100 143 表 4 不同密度隔离液120 ℃下的沉降稳定性
ρ隔离液/g·cm−3 ρ上/g·cm−3 ρ下/g·cm−3 沉降因子SF 1.30 1.30 1.30 0.5 1.50 1.49 1.51 0.503 1.70 1.68 1.72 0.506 表 5 隔离液与钻井液、水泥浆的流变相容性
水基钻
井液/%隔离液/
%水泥浆/
%流变读数 R值 φ3 φ6 φ100 φ200 φ300 φ600 100 0 7 8 25 38 58 82 95 5 7 8 27 43 62 85 −52 75 25 8 10 34 56 75 98 −44 50 50 7 9 56 78 94 130 −23 25 75 8 10 68 110 138 160 −11 5 95 10 13 75 122 150 191 −4 0 100 10 14 79 125 154 201 0 100 8 14 125 217 270 >300 5 95 9 14 118 200 268 >300 −7 25 75 9 14 108 170 221 >300 −17 50 50 9 13 97 154 189 278 −28 75 25 9 14 89 124 157 235 −36 95 5 10 13 80 100 125 186 −45 100 0 10 14 79 125 154 201 表 6 隔离液体系对水泥浆抗压强度的影响
水泥浆/ % 隔离液/ % 抗压强度/ MPa 100 0 28.6 95 5 24.5 75 25 8.9 -
[1] 张浩,李厚铭,符军放,等. 固井用悬浮稳定剂SS-10L的研究应用[J]. 科学技术与工程,2015,15(3):212-215,219.ZHANG Hao, LI Houming, FU Junfang, et al. Research and application of cementing suspension stabilizer SS-10L[J]. Science Technology and Engineering, 2015, 15(3):212-215,219. [2] 齐奔,刘文明,付家文,等. 高密度抗盐隔离液BH-HDS的研制与应用[J]. 钻井液与完井液,2017,34(5):73-78.QI Ben, LIU Wenming, FU Jiawen, et al. Development and application of high density salt resistant spacer BH-HDS[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):73-78. [3] 张敬涛,田野. 一种五元共聚高效油井水泥降滤失剂[J]. 天津化工,2022,36(4):38-41.ZHANG Jingtao, TIAN Ye. A high efficiency quinary polymerization fluid loss additive for well cementing[J]. Tianjin Chemical Industry, 2022, 36(4):38-41. [4] 王其可,刘文明,凌勇,等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液,2023,40(5):629-636.WANG Qike, LIU Wenming, LING Yong, et al. The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):629-636. [5] 孟仁洲, 牟少敏, 李渊, 等. 纳米乳液型冲洗隔离液体系构建及性能评价[J]. 钻井液与完井液, 2023, 40(4): 511-518.MENG Renzhou, MU Shaomin, LI Yuan, et al. Preparation and evaluation of a nanometer emulsion flushing spacer[J]. Drilling Fluid & Completion Fluid, 2023, 40(4): 511-518. [6]DOAN A, HOLLEY A, KELLUM M, et al. Application of an innovative spacer system designed for optimal performance in HTHP wells[C]//IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, USA, 2018: SPE-189682-MS. [6] 李家学, 蒋绍宾, 晏智航, 等. 钻完井液静态沉降稳定性评价方法[J]. 钻井液与完井液, 2019, 36(5): 575-580. LI Jiaxue, JIANG Shaobin, YAN Zhihang, et al. Study on the methods of evaluating static sedimentation stability of drill-in fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 575-580. [7] 郑睿,郭玉超,张春晖,等. 热物性参数对水泥浆循环温度的影响规律[J]. 钻井液与完井液,2023,40(6):787-792.ZHENG Rui, GUO Yuchao, ZHANG Chunhui, et al. Effects of thermal physical parameters on circulation temperature of cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):787-792. [8] API. Recommended Practice for Testing Well Cements: API RP 10B-2[S]. Washington, DC: American Petroleum Institute (API), 2013. [9] MENG R Z, WANG C W, SHEN Z H. Optimization and characterization of highly stable nanoemulsion for effective Oil-Based drilling fluid removal[J]. SPE Journal, 2020, 25(3):1259-1271. doi: 10.2118/199904-PA [10] 闫睿昶,徐明,虞海法,等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88.YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan Hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):82-88. [11] 王鼎,万向臣,杨晨. 低摩阻耐压防漏低密度水泥浆固井技术[J]. 钻井液与完井液,2022,39(8):608-614.WANG Ding, WAN Xiangchen, YANG Chen. Well cementing with low friction pressure resistant leaking preventive low density cement slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(8):608-614. [12] 闫睿昶,陈新勇,汝大军,等. 巴彦河套新区深井钻完井关键技术[J]. 石油钻采工艺,2022,44(1):15-19.YAN Ruichang, CHEN Xinyong, RU Dajun, et al. Key technologies for deep well drilling and completion in Bayan Hetao new area[J]. Oil Drilling & Production Technology, 2022, 44(1):15-19. [13] 涂思琦,谢飞燕,敖康伟,等. 一种适用于长宁页岩气井的高效洗油隔离液[J]. 钻井液与完井液,2022,39(1):82-86.TU Siqi, XIE Feiyan, AO Kangwei, et al. A high efficiency oil wash spacer for shale gas wells in Changning oilfield[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):82-86. [14] 谌德宝,亢菊峰. 即时混配型高密度固井隔离液[J]. 钻井液与完井液,2021,38(6):778-781.CHEN Debao, KANG Jufeng. An instantly prepared cementing spacer of high density[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):778-781. [15] 孙翊成,蒋林,刘成钢. 精细控压固井技术在川渝及塔里木盆地的应用[J]. 钻采工艺,2022,45(3):15-19.SUN Yicheng, JIANG Lin, LIU Chenggang. Precise managed pressure cementing technology application in Sichuan, Chongqing and tarim basin[J]. Drilling & Production Technology, 2022, 45(3):15-19. [16] 陈荣耀,宋建建,武中涛,等. 耐高温高密度防腐固井水泥浆[J]. 钻井液与完井液,2022,39(5):601-607.CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al. High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):601-607. [17] 张凡. 井筒高含水型微乳液冲洗液研究[J]. 钻井液与完井液,2023,40(1):89-95.ZHANG Fan. Study on high water content microemulsion flushing fluid used in borehole flushing[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):89-95. -