Development and Application of a High-Strength Equilateral Tetrahedron Resin Solidifiable Lost Circulation Material
-
摘要: 川渝地区在钻井过程中井漏频发,部分区域钻遇复杂地层发生恶性漏失,常常需要多次堵漏或多种堵漏工艺才能封堵成功,严重增加了钻井成本。通过对现有堵漏工艺进行分析,针对裂缝架桥填充原理,通过将高强度等四面体树脂作为主架桥材料、片状树脂及热固性树脂作为充填材料、纤维材料进行缠绕交联后研制成一种一袋式温控胶凝树脂固结堵漏材料YDFD。针对小裂缝,溶洞类、失返性(大裂缝)、呼吸性地层漏失情况,分别选用小、中、大3个型号的一袋式胶凝树脂固结堵漏剂进行级配,通过温控剂调节堵漏浆的固化时间保障施工安全、实现对漏层的精准封堵,在川渝油气井区处理井漏复杂过程中获得93%的一次堵漏成功率,达到了很好的应用效果,该工艺技术在油气田处理井漏难题时可推广应用。
-
关键词:
- 堵漏材料 /
- 高强度等四面体树脂 /
- 温控固结承压堵漏技术 /
- 现场试验
Abstract: Lost circulation during drilling is a downhole problem frequently encountered in the Chuanyu area, and in part of the area, severe lost circulation encountered in complex formations can only be cured after several times of operation and with different lost circulation control techniques, resulting in high drilling cost. By analyzing the lost circulation control techniques used in the past, a one-sack temperature-control gel-type resin lost circulation material (LCM) YDFD was developed based on the principles of bridging and packing in fractures. The raw materials in producing the LCM YDFD include a high-strength equilateral tetrahedron resin as the main bridging material, a flaky resin and a thermo-set resin as the packing material, and a fiber material, and these three materials, by entanglement crosslinking, produce the final product YDFD. In lost circulation control, three models of YDFD, which are small, medium and large, are mixed in a certain ratio to combat mud losses of different rates such as mud losses into small fractures, vugs, big fractures and another type of mud loss called breathing loss. Into the LCM slurry a temperature control agent is used to regulate the time required for the LCM slurry to solidify, thereby ensuring safe operation and accurate plugging of the channels into which mud is lost. In controlling lost circulation with the YDFD LCM in the Chuanyu area, 93% mud losses are successfully brought under control in the first try. This technique is worth trying in combating mud losses in oil and gas development. -
表 1 YDFD主架桥材料的配比实验
等四面体树脂 片状树脂/
g最大耐压/
MPa漏失量/
mLm/g 粒径/mm 420 1 180 4.0 240 480 1 120 4.8 170 540 1 60 4.6 180 420 3 180 3.5 350 480 3 120 4.5 210 540 3 60 4.0 250 420 6 180 2.0 410 480 6 120 4.0 230 540 6 60 3.5 250 注:使用3000 mL浓度为8%膨润土浆,耐压时间,滤失时间均为30 min;粒径分别为1、 3、6 mm的等四面体树脂选择的缝板宽度分别为2、4、6 mm。 表 2 YD-7的最优配比实验
等四面体树脂 YD-7/
g最大耐压/
MPa漏失量/
mLm/g 粒径/mm 480 1 30 5.1 155.0 480 1 45 5.4 130.0 480 1 60 5.6 90.0 480 3 30 4.8 160.0 480 3 45 5.2 120.0 480 3 60 5.6 100.0 480 6 30 4.2 180.0 480 6 45 5.2 160.0 480 6 60 5.4 130.0 注:使用3000 mL浓度为8%膨润土浆、120 g 片状树脂,耐压时间、滤失时间均为30 min;粒径分别为1、 3、6 mm的等四面体树脂选择的缝板宽度分别为2、4、6 mm。 表 3 YDFD-20的最优配比实验
加样 热固树脂/
%24 h后强度/
MPa20 g YD-7+50 g YDFD-20 5 6.5 20 g YD-7+100 g YDFD-20 10 7.2 20 g YD-7+150 g YDFD-20 15 9.1 20 g YD-7+200 g YDFD-20 20 11.6 注:使用1000 mL的清水另外加入160 g、粒径为3 mm的等四面体树脂和40 g片状树脂,体系密度为1.5 g/cm3,实验温度为100 ℃。 表 4 温控剂对堵漏浆稠化及固化时间的影响
水∶YDFD-II 实验条件 温控剂/
%ρ/
g·cm-3t稠化/
mint固化/
h1∶1 50 ℃、40 MPa 4.5 1.32 280 20 1∶0.8 70 ℃、50 MPa 15.0 1.53 200 17 1∶0.8 90 ℃、60 MPa 29.5 1.65 180 15 1∶0.8 100 ℃、70 MPa 36.0 1.75 182 12 1∶0.5 110 ℃、70 MPa 43.0 1.82 150 9 1∶0.5 120 ℃、80 MPa 50.0 2.03 150 6 1∶0.5 150 ℃、80 MPa 60.0 1.80 180 8 注:实验时间为40 min,温控剂加量为水量的百分比。 表 5 堵漏浆与不同体系钻井液的相容性
堵漏浆∶钻井液 1.20 g/cm3聚合物钻井液 1.60 g/cm3钾聚磺钻井液 2.0 g/cm3钾聚磺钻井液 流动度/
cm初始稠
度/Bc稠度3 h/
Bc流动度/
cm初始稠
度/Bc稠度3 h/
Bc流动度/
cm初始稠
度/Bc稠度3 h/
Bc7∶3 21.2 12.0 15.0 24.6 18.0 19.0 20.6 25.0 26.0 5∶5 23.6 20.0 22.0 25.2 25.0 27.0 22.4 24.0 28.0 3∶7 24.2 16.0 17.0 24.8 23.0 24.0 21.8 23.0 25.0 表 6 不同漏失情况下一袋式YDFD胶凝树脂堵漏浆配方
漏失类型 堵漏配方 一般轻微漏失 (5%~8%)YDFD-I+
(10%~15%)YDFD-Ⅱ大裂缝、溶洞恶性漏失 (8%~10%)YDFD-Ⅱ+
(15%~20%)YDFD-Ⅲ承压堵漏 (10%~15%)YDFD-I+
(10%~15%)YDFD-Ⅱ -
[1] 张洪利, 郭艳, 王志龙. 国内钻井堵漏材料现状[J]. 特种油气藏,2004,11(2):1-2,10. doi: 10.3969/j.issn.1006-6535.2004.02.001ZHANG Hongli, GUO Yan, WANG Zhilong. Lost circulation materials in China[J]. Special Oil & Gas Reservoirs, 2004, 11(2):1–2,10. doi: 10.3969/j.issn.1006-6535.2004.02.001 [2] 郝惠军,刘泼,严俊涛,等. 聚合物凝胶堵漏研究进展[J]. 钻井液与完井液,2022,39(6):661-667,676. doi: 10.12358/j.issn.1001-5620.2022.06.001HAO Huijun, LIU Po, YAN Juntao, et al. Progresses in the studies of mud loss control with polymer gels[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):661–667,676 doi: 10.12358/j.issn.1001-5620.2022.06.001 [3] 何雨, 孟鐾桥, 郑友志, 等. 渝西区块页岩气钻井防漏堵漏技术研究[J]. 石油工业技术监督,2023,39(7):58-62.HE Yu, MENG Biqiao, ZHENG Youzhi, et al. Research on leakage prevention and plugging technology of shale gas drilling in west Chongqing block[J]. Technology Supervision in Petroleum Industry, 2023, 39(7):58–62. [4] 李奎. 泸州深层页岩气呼吸性地层井漏堵漏方法及对策分析 ——以Y101H3-4井为例[J]. 钻探工程,2022,49(5):106-110. doi: 10.12143/j.ztgc.2022.05.015LI Kui. Plugging of breathing formation in deep shale gas wells in Luzhou: Taking Well Y101H3-4 for example[J]. Drilling Engineering, 2022, 49(5):106–110. doi: 10.12143/j.ztgc.2022.05.015 [5] 李科,贾江鸿,于雷,等. 页岩油钻井漏失机理及防漏堵漏技术[J]. 钻井液与完井液,2022,39(4):446-450. doi: 10.12358/j.issn.1001-5620.2022.04.008LI Ke, JIA Jianghong, YU Lei, et al. Mechanisms of lost circulation and technologies for mud loss prevention and control in shale oil drilling[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):446–450 doi: 10.12358/j.issn.1001-5620.2022.04.008 [6] 贺明敏, 吴俊, 蒲晓林, 等. 基于笼状结构体原理的承压堵漏技术研究[J]. 天然气工业,2013,33(10):80-84. doi: 10.3787/j.issn.10000976.2013.10.013HE Mingmin, WU Jun, PU Xiaolin, et al. A study of strengthening plugging based on the cage structure theory[J]. Natural Gas Industry, 2013, 33(10):80–84. doi: 10.3787/j.issn.10000976.2013.10.013 [7] 潘一, 李长平, 张立明, 等. 耐温承压堵漏剂的研究进展[J]. 应用化工,2020,49(2):476-482. doi: 10.3969/j.issn.1671-3206.2020.02.046PAN Yi, LI Changping, ZHANG Liming, et al. Research progress of temperature resistance and pressure bearing plugging agent[J]. Applied Chemical Engineering, 2020, 49(2):476–482. doi: 10.3969/j.issn.1671-3206.2020.02.046 [8] 孙金声, 朱跃成, 白英睿, 等. 改性热固性树脂研究进展及其在钻井液领域应用前景[J]. 中国石油大学学报(自然科学版),2022,46(2):60-75.SUN Jinsheng, ZHU Yuecheng, BAI Yingrui, et al. Research progress of modified thermosetting resin and its application prospects in field of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2):60–75. [9] 万伟, 李茂森, 黄平, 等. 川渝地区塑性堵漏技术的室内研究[J]. 钻井液与完井液,2014,31(5):52-55. doi: 10.3969/j.issn.1001-5620.2014.05.015WAN Wei, LI Maosen, HUANG Ping, et al. Laboratory research on plastic leakage stopping technology in Sichuan-Chongqing region[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):52–55. doi: 10.3969/j.issn.1001-5620.2014.05.015 [10] 詹俊阳, 刘四海, 刘金华, 等. 高强度耐高温化学固结堵漏剂HDL-1的研制及应用[J]. 石油钻探技术,2014,42(2):69-74.ZHAN Junyang, LIU Sihai, LIU Jinhua, et al. Development and application of chemical consolidation plugging agent HDL-1[J]. Petroleum Drilling Technology, 2014, 42(2):69–74. [11] 许婧, 王在明, 张艺馨, 等. 自固结堵漏技术在冀东油田G21X3井的应用[J]. 钻井液与完井液,2021,38(1):89-92.XU Jing, WANG Zaiming, ZHANG Yixin, et al. Application of a Self-Solidifying lost circulation material in well G21X3 in Jidong oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):89–92. [12] 冯杰,臧晓宇,邱正松,等. 温敏形状记忆堵漏材料实验研究[J]. 钻井液与完井液,2022,39(5):545-549. doi: 10.12358/j.issn.1001-5620.2022.05.003FENG Jie, ZANG Xiaoyu, QIU Zhengsong, et al. Characteristic study of thermosensitive shape memory lost circulation materials[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):545–549 doi: 10.12358/j.issn.1001-5620.2022.05.003 [13] 李洁,冯奇,张高峰,等. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理CFD-DEM模拟[J]. 钻井液与完井液,2022,39(6):721-729. doi: 10.12358/j.issn.1001-5620.2022.06.009LI Jie, FENG Qi, ZHANG Gaofeng, et al. CDF-DEM Simulation of the formation and failure mechanisms of plugging layers formed by plugging particles in fractures at mesoscale[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):721–729 doi: 10.12358/j.issn.1001-5620.2022.06.009 -