留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝土岩水平井快封堵防塌钻井液技术

贾俊 陈磊 郝超 周文军 冯永兵

贾俊,陈磊,郝超,等. 铝土岩水平井快封堵防塌钻井液技术[J]. 钻井液与完井液,2024,41(4):473-480 doi: 10.12358/j.issn.1001-5620.2024.04.008
引用本文: 贾俊,陈磊,郝超,等. 铝土岩水平井快封堵防塌钻井液技术[J]. 钻井液与完井液,2024,41(4):473-480 doi: 10.12358/j.issn.1001-5620.2024.04.008
JIA Jun, CHEN Lei, HAO Chao, et al.Fast plugging inhibitive drilling fluid technology for horizontal drilling through bauxite rocks[J]. Drilling Fluid & Completion Fluid,2024, 41(4):473-480 doi: 10.12358/j.issn.1001-5620.2024.04.008
Citation: JIA Jun, CHEN Lei, HAO Chao, et al.Fast plugging inhibitive drilling fluid technology for horizontal drilling through bauxite rocks[J]. Drilling Fluid & Completion Fluid,2024, 41(4):473-480 doi: 10.12358/j.issn.1001-5620.2024.04.008

铝土岩水平井快封堵防塌钻井液技术

doi: 10.12358/j.issn.1001-5620.2024.04.008
基金项目: 中国石油集团公司川庆钻探工程有限公司科技攻关项目课题“陇东铝土岩气藏水平井钻完井技术研究”(CQ2022B-17-2-3)。
详细信息
    作者简介:

    贾俊,高级工程师,1979年生,毕业于西北大学化学与化工专业,现在从事钻井液技术研究工作。电话 (029)86970948;E-mail:360944507@qq.com

  • 中图分类号: TE254.3

Fast Plugging Inhibitive Drilling Fluid Technology for Horizontal Drilling Through Bauxite Rocks

  • 摘要: 陇东铝土岩属于长庆油田重要的资源接替储层,近期完试的陇**井、宁**井在太原组铝土岩勘探获得重大突破。针对该类储层溶孔和裂缝发育,井壁垮塌、漏失风险高及井眼清洁能力差的技术难题,通过铝土岩物性参数、理化性能、力学性能和敏感性测试分析等,明确了陇东铝土岩主要坍塌因素,研发出适用于铝土岩安全钻进的快封堵防塌钻井液技术。该体系在170 ℃高温高压滤失量小于10 mL,钻井液二次回收率大于91%,铝土岩样品在钻井液体系中浸泡15 d后和清水浸泡15 d后的抗压强度相比提升81.8%。快封堵防塌钻井液技术在长庆首口铝土岩水平井陇4**井进行了试验应用,助力该井700 m水平段的安全钻进,该井投产获日产无阻流量3.53×106 m3高产气流,创鄂尔多斯盆地上古生届勘探开发50多年新纪录,为该类储层的勘探开发提供了技术支撑。

     

  • 图  1  不同井、不同井深的铝土岩岩心

    图  2  陇58井铝土岩的扫描电镜图

    图  3  清水浸泡对铝土岩样品力学强度影响

    图  4  不同提切剂对钻井液静切力的变化

    图  5  快封堵防塌钻井液封堵前后的岩板示意图

    图  6  快封堵防塌钻井液的高温高压流变性能

    图  7  铝土岩在不同流体浸泡后的力学强度变换情况

    图  8  陇47-1C井现场钻屑返出情况

    表  1  不同井太原组地层铝土岩的全岩矿物分析

    井 号深度 /m矿物含量/%黏土成分
    石英钾长石菱铁矿绿泥石/高岭石高岭石锐钛矿水铝石
    城3**-223874.390.70.6 37.231.230.4高岭石,少量伊利石
    城3**-223875.600.50.81234.532 20.1高岭石,极少量伊利石
    城3**-223876.96 0.6 29.217.652.6高岭石,伊利石次之
    陇**-1井4227.800.5 27.117.62.552.3高岭石为主,少量伊利石
    陇**-1井4228.050.5 28.215.82.252.4高岭石为主,极少量伊利石
    陇**-1井4229.08 0.6 29.217.62.550.1高岭石为主,伊利石次之
    陇**井4045.240.50.21.296.0高岭石为主,伊利石次之
    陇**井4045.600.60.21.196.1伊利石为主,高岭石次之
    陇**井4045.600.60.11.296.1伊利石为主
    下载: 导出CSV

    表  2  不同井铝土岩的黏土矿物分析

    井号深度/
    m
    高岭
    石/%
    绿泥
    石/%
    伊利
    石/%
    伊/蒙间
    层/%
    伊/蒙间
    层比 /%
    陇**-1井4227.8050257020
    陇**-1井4228.0550286720
    陇**-1井4229.0807613220
    陇**井4045.2402574120
    陇**井4045.6001603920
    下载: 导出CSV

    表  3  不同井铝土岩的膨胀量实验

    井号样品初始膨胀
    高度/mm
    最终膨胀
    高度/mm
    膨胀量/
    mm
    膨胀率/
    %
    陇**井1#7.178.561.3919.39
    2#7.058.251.2017.02
    城3-**井1#7.809.862.0619.07
    2#7.679.411.1118.49
    陇**-1井1#7.339.091.7624.01
    2#7.178.831.6623.15
    下载: 导出CSV

    表  4  不同井铝土岩的回收率实验(120 ℃)

    井号一次回收率/%二次回收率/%
    陇**井96.6193.32
    96.2092.76
    陇**-1井97.3392.17
    96.8191.51
    城**-1井95.3192.21
    94.2190.12
    下载: 导出CSV

    表  5  铝土岩干岩样的三轴力学性能

    样号围压/
    MPa
    长度/
    cm
    直径/
    cm
    泊松比弹性模量/
    MPa
    抗压强度/
    MPa
    峰值应变/
    %
    残余强度/
    MPa
    残余应变/
    %
    体积模量/
    MPa
    剪切模量/
    MPa
    备注
    1#40.85.0282.4770.27142 528.21149.270.42105.540.7216 730.2230 952.12干样
    2#40.85.0052.4770.46020 013.9849.830.5348.850.866854.1083 391.59清水浸泡15 d
    3#40.85.0372.4860.39329 576.6690.610.4777.201.0310 616.1746 069.56钻井液浸泡15 d
    下载: 导出CSV

    表  6  在钻井液中加入不同提切剂的流变性

    提切剂φ600φ300φ200φ100φ6φ3PV/PaAV/mPa·sGel/Pa
    10 min20 min40 min60 min
    XC705140285319351.02.03.05.0
    0.3%G341735438267419393.55.06.06.0
    下载: 导出CSV

    表  7  不同最大尺寸裂缝封堵剂的配比模拟结果

    最大孔隙8 μm最大孔隙10 μm最大孔隙20 μm
    封堵剂占比/
    kg·m−3
    封堵剂占比/
    kg·m−3
    封堵剂占比/
    kg·m−3
    G3080G3080G3080.08
    ASP-125020 ASP-125020 ASP-125017.11
    G3620G3620G3620.81
     注:ASP-1250为1250目石灰石。
    下载: 导出CSV

    表  8  在基浆中添加不同抑制剂的回收率

    抑制剂一次回收率/
    %
    二次回收率/
    %
    059.5249.71
    5.0%KCl72.2158.66
    10.0%KCl81.2666.38
    15.0%KCl87.8972.26
    7.0%KCl+1%G31995.6892.29
    10%复合盐64.3150.37
    1.0%有机胺G31993.2188.01
    2.0%有机胺G31995.3291.12
    下载: 导出CSV

    表  9  不同密度钻井液体系的性能

    项目实验
    条件
    ρ/
    g·cm-3
    PV/
    mPa·s
    AV/
    mPa·s
    FLHTHP/
    mL
    FL/
    mL
    1#热滚前1.2018.043.07.24.0
    140 ℃、16 h1.2118.038.57.54.6
    2#热滚前1.2521.045.06.83.6
    140 ℃、16 h1.2522.039.57.24.0
    3#热滚前1.3028.048.56.53.0
    140 ℃、16 h1.2922.041.07.03.6
    4#热滚前1.4024.053.06.02.8
    140 ℃、16 h1.4027.047.06.43.4
    下载: 导出CSV

    表  10  陇47-1C井现场钻井液的性能

    井深/mρ/(g·cm-3)FV/sFLAPI/mLpHφ600φ300φ200φ100φ6φ3AV/mPa·sPV/mPa·sYP/Pa
    44701.35551.69835139266541.5329.5
    45701.35551.69835139266541.5329.5
    46751.35551.69835139266541.5329.5
    47251.37551.29704333205435.0278.0
    49131.41561.29704333205435.0278.0
    下载: 导出CSV
  • [1] 付金华,范立勇,刘新社,等. 鄂尔多斯盆地天然气勘探新进展、前景展望和对策措施[J]. 中国石油勘探,2019,24(4):418-430. doi: 10.3969/j.issn.1672-7703.2019.04.002

    FU Jinhua, FAN Liyong, LIU Xinshe, et al. New progresses, prospects and countermeasures of natural gas exploration in the Ordos Basin[J]. China Petroleum Exploration, 2019, 24(4):418-430. doi: 10.3969/j.issn.1672-7703.2019.04.002
    [2] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.

    LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22.
    [3] 蒋官澄,宣扬,王金树,等. 仿生固壁钻井液体系的研究与现场应用[J]. 钻井液与完井液,2014,31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001

    JIANG Guancheng, XUAN Yang, WANG Jinshu, et al. Study and field application of bionic wall-fixing drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001
    [4] 李洁,冯奇,张高峰,等. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理CFD-DEM 模拟[J]. 钻井液与完井液,2022,39(6):721-729.

    LI Jie, FENG Qi, ZHANG Gaofeng, et al. CDF-DEM simulation of the formation and failure mechanisms of plugging layers formed by plugging particles in fractures at mesoscale[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):721-729.
    [5] 黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139-145.

    HUANG Chengsheng, CHU Qi, LI Tao, et al. The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):139-145.
    [6] 崔贵涛,郭康,董宏伟,等. 强抑制成膜封堵钻井液在长南气田的应用[J]. 钻采工艺,2016,39(5):71-73.

    CUI Guitao, GUO Kang, Dong Hongwei, et al. Application of high inhibition filmforming plugging type drilling fluid in Changnan gasfield[J]. Drilling & Production Technology, 2016, 39(5):71-73.
    [7] 孙凯, 冉茂林, 李鑫. 成膜防塌钻井液技术研究与应用[J]. 钻采工艺, 2021, 44(4): 104-109.

    SUN Kai, RAN Maolin, LI Xin. Research and Application of Film-forming Anti-collapse Drilling Fluid System[J].Drilling & Production Technology, 2021, 44(4): 104-109.
    [8] 陈磊,张小平,贾俊. 环保型抗高温复合抗泥包润滑剂的制备及应用[J]. 钻井液与完井液,2022,39(6):738-742.

    CHEN Lei, ZHANG Xiaoping, JIA Jun. Preparation and performance evaluation of environment-friendly anti-high temperature composite anti-mud-bag lubricant[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):738-742.
    [9] 陈晓华,邱正松,冯永超,等. 鄂尔多斯盆地富县区块强抑制强封堵防塌钻井液技术[J]. 钻井液与完井液,2021,38(4):462-468.

    CHEN Xiaohua, QIU Zhengsong, FENG Yongchao, et al. An anti-collapse drilling fluid with strong inhibitive and plugging capacity for use in the Fuxian block in Ordos Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):462-468.
    [10] 徐声驰,刘锐,孟鑫,等. 基于井眼坍塌角度和坍塌深度预测模型的泥岩水平段井壁稳定性评价方法[J]. 石油钻采工艺,2023,45(2):136-142.

    XU Shengchi, LIU Rui, MENG Xin, et al. Wellbore stability evaluation of horizontal wellbore in mudstone: a method based on wellbore collapse angle and depth model[J]. Oil Drilling & Production Technology, 2023, 45(2):136-142.
    [11] 张烈辉,何骁,李小刚,等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业,2021,41(8):143-152.

    ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8):143-152.
    [12] 天工. 中国石油西南油气田公司“钻”出中国页岩气井最长水平段[J]. 天然气工业,2020,40(4):142.

    TIAN Gong. PetroChina southwest oil and gas field company "drilled" the longest horizontal section of shale gas wells in China[J]. Natural Gas Industry, 2020, 40(4):142.
    [13] 孙永兴,贾利春. 国内3000m长水平段水平井钻井实例与认识[J]. 石油钻采工艺,2020,42(4):393-401.

    SUN Yongxing, JIA Lichun. Cases and understandings on the drilling of horizontal well with horizontal section of 3000 m long in China[J]. Oil Drilling & Production Technology, 2020, 42(4):393-401.
    [14] 韩来聚,牛洪波. 对长水平段水平井钻井技术的几点认识[J]. 石油钻探技术,2014,42(2):7-11.

    HAN Laiju, NIU Hongbo. Understandings on drilling technology for long horizontal section wells[J]. Petroleum Drilling Techniques, 2014, 42(2):7-11.
    [15] 袁锦彪,杨亚少,常旭轩,等. 页岩气油基钻井液堵漏技术及其在长宁区块应用[J]. 钻采工艺,2020,43(4):133-136. doi: 10.3969/J.ISSN.1006-768X.2020.04.37

    YUAN Jinbiao, YANG Yashao, CHANG Xuxuan, et al. Shale gas oil-based drilling fluid plugging technology and its application in Changning block[J]. Drilling & Production Technology, 2020, 43(4):133-136. doi: 10.3969/J.ISSN.1006-768X.2020.04.37
    [16] 杨海平,游云武. 焦页2-5HF长水平井钻完井关键技术[J]. 钻采工艺,2018,41(3):5-8. doi: 10.3969/J.ISSN.1006-768X.2018.03.02

    YANG Haiping, YOU Yunwu. Critical drilling technology for drilling super-long horizontal well JY 2-5HF[J]. Drilling & Production Technology, 2018, 41(3):5-8. doi: 10.3969/J.ISSN.1006-768X.2018.03.02
    [17] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28-36. doi: 10.11911/syztjs.2020050

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of well Hua H50-7 in the Changqing oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4):28-36. doi: 10.11911/syztjs.2020050
    [18] 胡祖彪,张建卿,王清臣,等. 长庆致密气超长水平段水基钻井液技术[J]. 钻井液与完井液,2021,38(2):183-188. doi: 10.3969/j.issn.1001-5620.2021.02.009

    HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Water base drilling fluid technology for ultra-long horizontal drilling in a tight gas well in Changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):183-188. doi: 10.3969/j.issn.1001-5620.2021.02.009
    [19] 金军斌,欧彪,张杜杰,等. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望[J]. 长江大学学报(自科版),2021,18(6):47-54.

    JIN Junbin, OU Biao, ZHANG Dujie, et al. Research status and prospect of borehole stability technology in deep fractured carbonate reservoirs[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6):47-54.
    [20] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113-120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3):113-120.
    [21] 豆宁辉,王志远,刘殿琛. 复杂地层防塌钻井液体系优化研究[J]. 钻采工艺,2020,43(6):103-106.

    DOU Ninghui, WANG Zhiyuan, LIU Dianchen. Study on drilling fluid system optimization for preventing collapse in complex formation[J]. Drilling & Production Technology, 2020, 43(6):103-106.
  • 加载中
图(8) / 表(10)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  66
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-09
  • 修回日期:  2024-01-18
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回