Fast Plugging Inhibitive Drilling Fluid Technology for Horizontal Drilling Through Bauxite Rocks
-
摘要: 陇东铝土岩属于长庆油田重要的资源接替储层,近期完试的陇**井、宁**井在太原组铝土岩勘探获得重大突破。针对该类储层溶孔和裂缝发育,井壁垮塌、漏失风险高及井眼清洁能力差的技术难题,通过铝土岩物性参数、理化性能、力学性能和敏感性测试分析等,明确了陇东铝土岩主要坍塌因素,研发出适用于铝土岩安全钻进的快封堵防塌钻井液技术。该体系在170 ℃高温高压滤失量小于10 mL,钻井液二次回收率大于91%,铝土岩样品在钻井液体系中浸泡15 d后和清水浸泡15 d后的抗压强度相比提升81.8%。快封堵防塌钻井液技术在长庆首口铝土岩水平井陇4**井进行了试验应用,助力该井700 m水平段的安全钻进,该井投产获日产无阻流量3.53×106 m3高产气流,创鄂尔多斯盆地上古生届勘探开发50多年新纪录,为该类储层的勘探开发提供了技术支撑。Abstract: Two wells, the well Long-XX and the well Ning-XX, in Longdong area are recently tested, and the target zone located in the bauxite formation has been found an important alternative resource for the Changqing Oilfield. Significant findings were obtained in exploring the bauxite formation through these two wells. Technical difficulties, such as prevailing of dissolution pores and fractures, borehole wall collapse, mud losses and poor hole cleaning etc. have been encountered in drilling the target bauxite formation. The main factors contributing to borehole wall collapse were found in analyzing and testing the bauxite samples for physical properties, chemical properties, mechanical properties and sensitivity characteristics, and a fast-plugging, inhibitive drilling fluid for safe drilling of the bauxite formation was developed. This drilling fluid has high temperature (170 ℃) high pressure filter loss of less than 10 mL and percent secondary cuttings recovery of greater than 91%. After soaking the bauxite samples in the drilling fluid and fresh water respectively for 15 days, the compressive strength of the samples tested in the drilling fluid is 81.8% higher than that of the samples tested in the fresh water. This drilling fluid has been tried in drilling the first horizontal Long-4XX well targeted the bauxite reservoir in Changqing, a horizontal section of 700 m was successfully drilled. The daily flowing production rate of this well is 3.53 × 106 m3, a new record made in developing the upper Paleozoic resources in the Erdos basin in the last 50 more years. This technology has provided a technical support to the development of the similar reservoirs.
-
Key words:
- Bauxite /
- Horizontal well /
- Fast plugging /
- Anti-collapse /
- Drilling fluid
-
表 1 不同井太原组地层铝土岩的全岩矿物分析
井 号 深度 /m 矿物含量/% 黏土成分 石英 钾长石 菱铁矿 绿泥石/高岭石 高岭石 锐钛矿 水铝石 城3**-22 3874.39 0.7 0.6 37.2 31.2 30.4 高岭石,少量伊利石 城3**-22 3875.60 0.5 0.8 12 34.5 32 20.1 高岭石,极少量伊利石 城3**-22 3876.96 0.6 29.2 17.6 52.6 高岭石,伊利石次之 陇**-1井 4227.80 0.5 27.1 17.6 2.5 52.3 高岭石为主,少量伊利石 陇**-1井 4228.05 0.5 28.2 15.8 2.2 52.4 高岭石为主,极少量伊利石 陇**-1井 4229.08 0.6 29.2 17.6 2.5 50.1 高岭石为主,伊利石次之 陇**井 4045.24 0.5 0.2 1.2 96.0 高岭石为主,伊利石次之 陇**井 4045.60 0.6 0.2 1.1 96.1 伊利石为主,高岭石次之 陇**井 4045.60 0.6 0.1 1.2 96.1 伊利石为主 表 2 不同井铝土岩的黏土矿物分析
井号 深度/
m高岭
石/%绿泥
石/%伊利
石/%伊/蒙间
层/%伊/蒙间
层比 /%陇**-1井 4227.80 5 0 25 70 20 陇**-1井 4228.05 5 0 28 67 20 陇**-1井 4229.08 0 7 61 32 20 陇**井 4045.24 0 2 57 41 20 陇**井 4045.60 0 1 60 39 20 表 3 不同井铝土岩的膨胀量实验
井号 样品 初始膨胀
高度/mm最终膨胀
高度/mm膨胀量/
mm膨胀率/
%陇**井 1# 7.17 8.56 1.39 19.39 2# 7.05 8.25 1.20 17.02 城3-**井 1# 7.80 9.86 2.06 19.07 2# 7.67 9.41 1.11 18.49 陇**-1井 1# 7.33 9.09 1.76 24.01 2# 7.17 8.83 1.66 23.15 表 4 不同井铝土岩的回收率实验(120 ℃)
井号 一次回收率/% 二次回收率/% 陇**井 96.61 93.32 96.20 92.76 陇**-1井 97.33 92.17 96.81 91.51 城**-1井 95.31 92.21 94.21 90.12 表 5 铝土岩干岩样的三轴力学性能
样号 围压/
MPa长度/
cm直径/
cm泊松比 弹性模量/
MPa抗压强度/
MPa峰值应变/
%残余强度/
MPa残余应变/
%体积模量/
MPa剪切模量/
MPa备注 1# 40.8 5.028 2.477 0.271 42 528.21 149.27 0.42 105.54 0.72 16 730.22 30 952.12 干样 2# 40.8 5.005 2.477 0.460 20 013.98 49.83 0.53 48.85 0.86 6854.10 83 391.59 清水浸泡15 d 3# 40.8 5.037 2.486 0.393 29 576.66 90.61 0.47 77.20 1.03 10 616.17 46 069.56 钻井液浸泡15 d 表 6 在钻井液中加入不同提切剂的流变性
提切剂 φ600 φ300 φ200 φ100 φ6 φ3 PV/Pa AV/mPa·s Gel/Pa 10 min 20 min 40 min 60 min XC 70 51 40 28 5 3 19 35 1.0 2.0 3.0 5.0 0.3%G341 73 54 38 26 7 4 19 39 3.5 5.0 6.0 6.0 表 7 不同最大尺寸裂缝封堵剂的配比模拟结果
最大孔隙8 μm 最大孔隙10 μm 最大孔隙20 μm 封堵剂 占比/
kg·m−3封堵剂 占比/
kg·m−3封堵剂 占比/
kg·m−3G308 0 G308 0 G308 0.08 ASP-1250 20 ASP-1250 20 ASP-1250 17.11 G362 0 G362 0 G362 0.81 注:ASP-1250为1250目石灰石。 表 8 在基浆中添加不同抑制剂的回收率
抑制剂 一次回收率/
%二次回收率/
%0 59.52 49.71 5.0%KCl 72.21 58.66 10.0%KCl 81.26 66.38 15.0%KCl 87.89 72.26 7.0%KCl+1%G319 95.68 92.29 10%复合盐 64.31 50.37 1.0%有机胺G319 93.21 88.01 2.0%有机胺G319 95.32 91.12 表 9 不同密度钻井液体系的性能
项目 实验
条件ρ/
g·cm-3PV/
mPa·sAV/
mPa·sFLHTHP/
mLFL/
mL1# 热滚前 1.20 18.0 43.0 7.2 4.0 140 ℃、16 h 1.21 18.0 38.5 7.5 4.6 2# 热滚前 1.25 21.0 45.0 6.8 3.6 140 ℃、16 h 1.25 22.0 39.5 7.2 4.0 3# 热滚前 1.30 28.0 48.5 6.5 3.0 140 ℃、16 h 1.29 22.0 41.0 7.0 3.6 4# 热滚前 1.40 24.0 53.0 6.0 2.8 140 ℃、16 h 1.40 27.0 47.0 6.4 3.4 表 10 陇47-1C井现场钻井液的性能
井深/m ρ/(g·cm-3) FV/s FLAPI/mL pH φ600 φ300 φ200 φ100 φ6 φ3 AV/mPa·s PV/mPa·s YP/Pa 4470 1.35 55 1.6 9 83 51 39 26 6 5 41.5 32 9.5 4570 1.35 55 1.6 9 83 51 39 26 6 5 41.5 32 9.5 4675 1.35 55 1.6 9 83 51 39 26 6 5 41.5 32 9.5 4725 1.37 55 1.2 9 70 43 33 20 5 4 35.0 27 8.0 4913 1.41 56 1.2 9 70 43 33 20 5 4 35.0 27 8.0 -
[1] 付金华,范立勇,刘新社,等. 鄂尔多斯盆地天然气勘探新进展、前景展望和对策措施[J]. 中国石油勘探,2019,24(4):418-430. doi: 10.3969/j.issn.1672-7703.2019.04.002FU Jinhua, FAN Liyong, LIU Xinshe, et al. New progresses, prospects and countermeasures of natural gas exploration in the Ordos Basin[J]. China Petroleum Exploration, 2019, 24(4):418-430. doi: 10.3969/j.issn.1672-7703.2019.04.002 [2] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22. [3] 蒋官澄,宣扬,王金树,等. 仿生固壁钻井液体系的研究与现场应用[J]. 钻井液与完井液,2014,31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001JIANG Guancheng, XUAN Yang, WANG Jinshu, et al. Study and field application of bionic wall-fixing drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001 [4] 李洁,冯奇,张高峰,等. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理CFD-DEM 模拟[J]. 钻井液与完井液,2022,39(6):721-729.LI Jie, FENG Qi, ZHANG Gaofeng, et al. CDF-DEM simulation of the formation and failure mechanisms of plugging layers formed by plugging particles in fractures at mesoscale[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):721-729. [5] 黄乘升,褚奇,李涛,等. 抗高温聚合物纳米微球封堵剂的合成与性能评价[J]. 钻井液与完井液,2022,39(2):139-145.HUANG Chengsheng, CHU Qi, LI Tao, et al. The synthesis and evaluation of a high temperature nano micro-spherical polymer plugging agent[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):139-145. [6] 崔贵涛,郭康,董宏伟,等. 强抑制成膜封堵钻井液在长南气田的应用[J]. 钻采工艺,2016,39(5):71-73.CUI Guitao, GUO Kang, Dong Hongwei, et al. Application of high inhibition filmforming plugging type drilling fluid in Changnan gasfield[J]. Drilling & Production Technology, 2016, 39(5):71-73. [7] 孙凯, 冉茂林, 李鑫. 成膜防塌钻井液技术研究与应用[J]. 钻采工艺, 2021, 44(4): 104-109.SUN Kai, RAN Maolin, LI Xin. Research and Application of Film-forming Anti-collapse Drilling Fluid System[J].Drilling & Production Technology, 2021, 44(4): 104-109. [8] 陈磊,张小平,贾俊. 环保型抗高温复合抗泥包润滑剂的制备及应用[J]. 钻井液与完井液,2022,39(6):738-742.CHEN Lei, ZHANG Xiaoping, JIA Jun. Preparation and performance evaluation of environment-friendly anti-high temperature composite anti-mud-bag lubricant[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):738-742. [9] 陈晓华,邱正松,冯永超,等. 鄂尔多斯盆地富县区块强抑制强封堵防塌钻井液技术[J]. 钻井液与完井液,2021,38(4):462-468.CHEN Xiaohua, QIU Zhengsong, FENG Yongchao, et al. An anti-collapse drilling fluid with strong inhibitive and plugging capacity for use in the Fuxian block in Ordos Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):462-468. [10] 徐声驰,刘锐,孟鑫,等. 基于井眼坍塌角度和坍塌深度预测模型的泥岩水平段井壁稳定性评价方法[J]. 石油钻采工艺,2023,45(2):136-142.XU Shengchi, LIU Rui, MENG Xin, et al. Wellbore stability evaluation of horizontal wellbore in mudstone: a method based on wellbore collapse angle and depth model[J]. Oil Drilling & Production Technology, 2023, 45(2):136-142. [11] 张烈辉,何骁,李小刚,等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业,2021,41(8):143-152.ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8):143-152. [12] 天工. 中国石油西南油气田公司“钻”出中国页岩气井最长水平段[J]. 天然气工业,2020,40(4):142.TIAN Gong. PetroChina southwest oil and gas field company "drilled" the longest horizontal section of shale gas wells in China[J]. Natural Gas Industry, 2020, 40(4):142. [13] 孙永兴,贾利春. 国内3000m长水平段水平井钻井实例与认识[J]. 石油钻采工艺,2020,42(4):393-401.SUN Yongxing, JIA Lichun. Cases and understandings on the drilling of horizontal well with horizontal section of 3000 m long in China[J]. Oil Drilling & Production Technology, 2020, 42(4):393-401. [14] 韩来聚,牛洪波. 对长水平段水平井钻井技术的几点认识[J]. 石油钻探技术,2014,42(2):7-11.HAN Laiju, NIU Hongbo. Understandings on drilling technology for long horizontal section wells[J]. Petroleum Drilling Techniques, 2014, 42(2):7-11. [15] 袁锦彪,杨亚少,常旭轩,等. 页岩气油基钻井液堵漏技术及其在长宁区块应用[J]. 钻采工艺,2020,43(4):133-136. doi: 10.3969/J.ISSN.1006-768X.2020.04.37YUAN Jinbiao, YANG Yashao, CHANG Xuxuan, et al. Shale gas oil-based drilling fluid plugging technology and its application in Changning block[J]. Drilling & Production Technology, 2020, 43(4):133-136. doi: 10.3969/J.ISSN.1006-768X.2020.04.37 [16] 杨海平,游云武. 焦页2-5HF长水平井钻完井关键技术[J]. 钻采工艺,2018,41(3):5-8. doi: 10.3969/J.ISSN.1006-768X.2018.03.02YANG Haiping, YOU Yunwu. Critical drilling technology for drilling super-long horizontal well JY 2-5HF[J]. Drilling & Production Technology, 2018, 41(3):5-8. doi: 10.3969/J.ISSN.1006-768X.2018.03.02 [17] 胡祖彪,张建卿,王清臣,等. 长庆油田华H50-7井超长水平段钻井液技术[J]. 石油钻探技术,2020,48(4):28-36. doi: 10.11911/syztjs.2020050HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Drilling fluid technology for ultra-long horizontal section of well Hua H50-7 in the Changqing oilfield[J]. Petroleum Drilling Techniques, 2020, 48(4):28-36. doi: 10.11911/syztjs.2020050 [18] 胡祖彪,张建卿,王清臣,等. 长庆致密气超长水平段水基钻井液技术[J]. 钻井液与完井液,2021,38(2):183-188. doi: 10.3969/j.issn.1001-5620.2021.02.009HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Water base drilling fluid technology for ultra-long horizontal drilling in a tight gas well in Changqing oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):183-188. doi: 10.3969/j.issn.1001-5620.2021.02.009 [19] 金军斌,欧彪,张杜杰,等. 深部裂缝性碳酸盐岩储层井壁稳定技术研究现状及展望[J]. 长江大学学报(自科版),2021,18(6):47-54.JIN Junbin, OU Biao, ZHANG Dujie, et al. Research status and prospect of borehole stability technology in deep fractured carbonate reservoirs[J]. Journal of Yangtze University (Natural Science Edition) , 2021, 18(6):47-54. [20] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113-120.LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of well Ying-1 in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3):113-120. [21] 豆宁辉,王志远,刘殿琛. 复杂地层防塌钻井液体系优化研究[J]. 钻采工艺,2020,43(6):103-106.DOU Ninghui, WANG Zhiyuan, LIU Dianchen. Study on drilling fluid system optimization for preventing collapse in complex formation[J]. Drilling & Production Technology, 2020, 43(6):103-106. -