Controlling Mud Losses into Deep Surface Formations of the Strike-Slip Fault Zone in the Tianhuan Depression in Ordos Basin
-
摘要: 近年来随着青石峁区域的高产工业气流井的增加,该区域已成为长庆油田下一步天然气勘探开发的重要领域。青石峁区域属于鄂尔多斯盆地天环坳陷地质结构,但随着深探井部署增加,钻井井漏日益凸显,特别是深表层恶性漏失加剧,主要表现在第四系富含水层活跃,常规堵漏技术堵漏成功率低;罗汉洞组存在大段连续裂缝地层、漏失频发、堵漏时间长,为解决钻井过程中堵漏技术难点,针对浅层动水层,采用体膨阻水堵漏技术进行封固。研发随钻大颗粒漏速控制技术,实现一趟钻钻穿大段裂缝,进入稳定地层后采用多级配可固化堵漏工作液进行大段裂缝型漏层的封固,形成了一套鄂尔多斯盆地天环坳陷走滑断裂带深表层堵漏技术。该技术在青石卯区域成功应用,顺利完成多口深表层的施工。Abstract: In recent years, with the increase of high-yield industrial gas flow wells in the Qingshimao area, this area has The Qingshimao block in recent years has become a high gas production area and will be the next important exploration block in Changqing Oilfield. Geologically the Qingshimao block belongs to the Tianhuan depression in Erdos Basin, with more and more deep exploratory wells drilled in recent years, lost circulation, especially severe mud losses in deep surface section of a well, has been more frequently encountered during drilling. The severe lost circulation is mainly encountered in the Quaternary System in which formation waters are very active, and conventional techniques for controlling the lost circulation are rarely effective. The Luohandong formation, on the other hand, has long section of continuously fractured formation, and the lost circulation is frequently encountered and the treatment is time-consuming. In dealing with mud losses in shallower water-bearing formations, a lost circulation slurry that expands when in contact with water is used to control mud losses. Large particles that can control the rate of mud losses have been developed and used to ensure one trip of drilling through the whole length of fractures. When drilling into stable formations, cementable lost circulation slurries with wide particle size distribution can be used to plug and seal off the long section of fractured formations. These practices have formed a special technology for controlling mud losses encountered in drilling the deep surface hole in the strike-slip fault zone in the Tianhuan depression in Erdos Basin. This technology has been successfully used in the Qingshimao block, and several wells with deep surface holes have been successfully drilled.
-
Key words:
- Erdos Basin /
- Tianhuan depression /
- Severe mud loss /
- Strike-slip fault
-
表 1 堵漏工作液的催化剂加量优选
预聚体/
g催化剂/
%水/
gt初始反应/
st完全反应/
s抗压强度/
MPa50 1 50 60 210 2.0 50 3 50 49 170 2.5 50 5 50 25 68 3.0 50 7 50 10 40 3.1 50 9 50 5 26 3.1 表 2 堵漏工作液在空气中的暴露安全时间
预聚体/
g催化剂/
%放置不同时间(min)的稳定性 10 20 30 40 50 60 50 1 稳定 稳定 稳定 稳定 稳定 稳定 50 3 稳定 稳定 稳定 稳定 稳定 反应 50 5 稳定 稳定 稳定 稳定 稳定 反应 50 7 稳定 稳定 稳定 反应 反应 反应 50 9 稳定 稳定 反应 反应 反应 反应 表 3 悬浮剂的优选
悬浮剂 加量/
%石英砂/
%不同时间(min)的密度差/(g·cm-3) 10 20 30 40 50 60 XCD 0.1 30 0.15 0.2 0.35 0.37 0.42 0.45 0.3 30 0.11 0.19 0.25 0.31 0.36 0.41 0.5 30 0.09 0.11 0.13 0.20 0.27 0.35 0.7 30 0.03 0.04 0.07 0.12 0.13 0.15 PAC-HV 0.1 30 0.27 0.33 0.43 0.47 0.51 0.53 0.3 30 0.22 0.29 0.34 0.39 0.43 0.48 0.5 30 0.11 0.18 0.24 0.27 0.33 0.38 0.7 30 0.04 0.08 0.14 0.18 0.21 0.23 TDL-1 0.1 30 0.02 0.03 0.05 0.09 0.12 0.16 0.3 30 0.01 0.01 0.02 0.07 0.10 0.12 0.5 30 0 0.01 0.01 0.01 0.02 0.02 0.7 30 0 0.01 0.01 0.01 0.01 0.02 表 4 多级配可固化堵漏工作液在不同缝板宽度的封堵承压性能(60 ℃)
缝板/mm 承压/MPa FL/mL 滤失率/% 0.5 10 50 10 1.0 10 125 25 1.5 10 155 31 2.0 10 245 49 表 5 多级配可固化堵漏工作液的常规性能
测试条件 AV/mPa·s PV/mPa·s YP/Pa Gel/(Pa/Pa) 初始 48 42 5.74 3/9 静止(4 h) 61 43 17.21 5/13 静止(8 h) 68 46 21.03 7/18 静止(12 h) 78 53 23.90 9/20 表 6 不同支撑剂含量对堵漏工作液流动性的影响
ZCJ/% ρ/(g·cm−3) 塌落度/mm 施工安全性评价 0 1.25 25.0 易泵送 5 1.27 23.5 易泵送 10 1.29 23.0 易泵送 15 1.32 20.0 易泵送 20 1.35 18.5 易泵送 25 1.37 16.0 不易泵送 30 1.40 12.0 难泵送 表 7 多级配可固化堵漏工作液对不同 缝板宽度的封堵承压性能
P/MPa 在不同缝板宽度(mm)的滤失量/mL 0.5 1 2 3 0 0 0 0 0 1 1.5 1.5 2.0 2.0 2 3.0 3.0 4.0 4.0 3 3.0 3.5 4.0 5.0 4 3.0 3.5 4.0 5.0 5 3.5 3.5 4.0 5.0 6 4.0 4.0 4.0 5.5 7 4.0 4.0 4.5 5.5 8 4.0 4.0 4.5 7.0 9 4.0 4.0 4.5 7.0 10 4.0 4.0 4.5 7.0 注:实验温度为60 ℃,以1 MPa/10 min的加压速率从0逐级加压至10 MPa。 -
[1] 曹晶晶,刚文哲,杨尚儒,等. 鄂尔多斯盆地天环坳陷南段长8段油藏成藏主控因素及模式[J]. 天然气地球科学,2023,34(10):1752-1767.CAO Jingjing, GANG Wenzhe, YANG Shangru, et al. Main controlling factors and hydrocarbon accumulation model of Chang 8 reservoir in southern Tianhuan Depression, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(10):1752-1767. [2] 高阳,陈姗姗,吴德海,等. 致密砂岩气藏地层水地球化学特征——以天环坳陷北段上古生界为例[J]. 西安石油大学学报(自然科学版),2022,37(1):23-33.GAO Yang, CHEN Shanshan, WU Dehai, et al. Geochemical characteristics of formation water in tight sandstone gas reservoir: taking upper paleozoic in northern part of Tianhuan depression as an example[J]. Journal of Xi'an Shiyou University(Natural Science) , 2022, 37(1):23-33. [3] 郑有成,郭建华. 长裸眼恶性漏失井膨胀管堵漏适用技术[J]. 天然气工业,2023,43(8):98-107.ZHENG Youcheng, GUO Jianhua. Application of expandable tubular plugging technology in long open hole wells with severe lost circulation[J]. Natural Gas Industry, 2023, 43(8):98-107. [4] 张敏,邓鹏,李俊岭,等. 川东北地区马路背区块钻井防漏堵漏技术探讨[J]. 石油地质与工程,2022,36(3):87-92.ZHANG Min, DENG Peng, LI Junling, et al. Discussion on leakage prevention and plugging technology in Malubei block in Northeast Sichuan[J]. Petroleum Geology and Engineering, 2022, 36(3):87-92. [5] 孙欢. 致密油洛河组Φ311.1 mm井眼堵漏技术研究与应用[J]. 石油化工应用,2022,41(4):26-29,43.SUN Huan. Research and application of plugging technology in well Φ311.1 mm of tight oil Luohe formation[J]. Petrochemical Industry Application, 2022, 41(4):26-29,43. [6] 孙欢,朱明明,王伟良,等. 长庆页岩油水平井华H90-3井超长水平段防漏堵漏技术[J]. 石油钻探技术,2022,50(2):16-21.SUN Huan, ZHU Mingming, WANG Weiliang, et al. Lost circulation prevention and plugging technologies for the Ultra-Long horizontal section of the horizontal shale oil well Hua H90-3 in Changqing oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2):16-21. [7] 赵素丽. 浓度响应型水触变材料及在含水漏层堵漏技术的应用[J]. 钻井液与完井液,2022,39(4):423-429.ZHAO Suli. Study on concentration responsive water thixotropic material and plugging technology of water bearing leakage layer[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):423-429. [8] 王勇,蒋官澄,杜庆福,等. 超分子化学堵漏技术研究与应用[J]. 钻井液与完井液,2018,35(3):48-53.WANG Yong, JIANG Guancheng, DU Qingfu, et al. Study and application of supramolecule chemical LCM technology[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):48-53. [9] 马川. 裂缝漏层堵漏钻井液研究[D]. 成都: 西南石油大学, 2018.Machuan. Research on plugging drilling fluid for fracture lost circulation zone[D]. Chengdu: Southwest University of Petroleum, 2018. [10] 姚亚群,徐洋洋,鲍俊杰,等. 基于NaOH中和剂制备羧酸型水性聚氨酯及其性能分析[J]. 塑料,2023,52(5):79-82,88.YAO Yaqun, XU Yangyang, BAO Junjie, et al. Preparation and performance of carboxylic acid type waterborne polyurethane with NaOH neutralizer[J]. Plastics, 2023, 52(5):79-82,88. [11] 汤祖杰,吴祖梁,戴文斌,等. 聚氨酯增韧环氧树脂(PUEP)裂缝修补材料黏结性能研究[J]. 交通科技,2023(5):128-132.TANG Zujie, WU Zuliang, DAI Wenbin, et al. Study on the bonding performance of polyurethane modified epoxy resin (PUEP) crack repair material[J]. Transportation Science & Technology, 2023(5):128-132. [12] 吴敏达. 双重改性聚氨酯丙烯酸酯的制备及应用研究[J]. 中国石油和化工标准与质量,2023,43(18):82-84.WU Minda. Preparation and application research of double modified polyurethane acrylate[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(18):82-84. [13] 黄志安,吴波,王委,等. YS139H1平台井上部复杂地层优快钻井关键技术[J]. 复杂油气藏,2021,14(4):90-96.HUANG Zhian, WU Bo, WANG Wei, et al. Key technologies of optimal and fast well drilling for upper complex formation of YS139H1 platform well[J]. Complex Hydrocarbon Reservoirs, 2021, 14(4):90-96. [14] 孙欢,王运功,倪华峰. 多形变堵漏工作液的研发与应用[J]. 石油化工应用,2023,42(5):79-82.SUN Huan, WANG Yungong, NI Huafeng. Development and application of multiform variable sealing working fluid[J]. Petrochemical Industry Application, 2023, 42(5):79-82. [15] 孙金声,杨景斌,白英睿,等. 裂缝性地层桥接堵漏技术发展综述与展望[J]. 石油科学通报,2023,8(4):415-431.SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Review and prospect of bridging plugging technology in fractured formation[J]. Petroleum Science Bulletin, 2023, 8(4):415-431. -