Development and Evaluation of a Calcium-Resistant Compound Bentonite
-
摘要: 在地下连续墙、桩基工程等施工过程中,钻井液频繁与混凝土接触,钙离子不断侵入钻井液,钻井液的工作性能会逐渐恶化,在施工结束后会产生大体量的废弃浆液。为提高钻井液的抗钙能力,减少废浆产量,有必要对天然膨润土进行改性处理。优选高速离心法对天然膨润土进行提纯,选用含碳碳双键的亲水性单体BX、含磺酸基团的亲水性单体AS和AP为聚合单体,在提纯后的膨润土层间发生自由基原位聚合反应,合成了抗钙复合膨润土ACB-16。傅立叶红外光谱、粒径分布、扫描电镜和透射电镜结果表明,单体成功在膨润土层间原位聚合。抗钙复合膨润土超过了OCMA级膨润土标准,所配制的钻井液表观黏度为26 mPa·s,API滤失量为7.6 mL,具有合适的流变性和良好的降滤失性,抗钙性能良好:在1% CaCl2污染下,钻井液流变性与滤失性性能稳定,极限抗Ca2+能力可达6300 mg/L(以CaCl2计为1.75%),可完全满足基础工程领域的钻井液抗钙需求。结合粒径分析与扫描电镜方法,分析其作用机理。位于膨润土网架结构中的高分子聚合物阻止Ca2+与膨润土发生离子交换作用,维持膨润土的水化膜厚度及层间距,支撑膨润土水化所形成的网架结构。直接将抗钙复合膨润土与水混合便可得到性能优异的抗钙钻井液,使用方便,在基础工程等领域具有良好的应用前景,也可以为盐膏层防塌钻井液等高钙环境钻井液的设计提供参考价值。Abstract: In underground diaphragm wall and pile foundation engineering operations, calcium ions from the concrete continually invade into the drilling fluids because of the frequent contact of the drilling fluids with the concrete, leading to gradual deterioration of the basic properties of the drilling fluids and large amount of waste muds after the operations. To improve the calcium resistance of the drilling fluids and minimize the amount of waste drilling fluids produced, the natural bentonite used to formulate the drilling fluids needs to be modified. A calcium-resistant compound bentonite ACB-16 is synthesized with natural bentonite purified through high-speed centrifuging and monomers for polymerization, such as a hydrophilic monomer BX with double carbon bonds, hydrophilic monomers AS and AP with sulfonic acid groups. In the polymerization reaction, the monomers enter into the crystal spaces of the purified bentonite, reacting with each other through in-situ free radical polymerization. Studies on the polymerization products with FT-IR, particle size distribution test, SEM and TEM show that the monomers successfully in-situ polymerize in the crystal spaces of the bentonite. The quality of ACB-16 exceeds the quality of the OCMA bentonite. A drilling fluid formulated with ACB-16 has an apparent viscosity of 26 mPa∙s, an API filter loss of 7.6 mL, a good rheology and filtration property as well as a good calcium resistance. When contaminated with 1% calcium chloride, the rheology and filtration property of the drilling fluid are still stable. The limit of calcium resistance of a drilling fluid formulated with ACB-16 is 6,300 mg/L (equivalent to 1.75% CaCl2), perfectly satisfying the requirements for a drilling fluid to resist calcium contamination in foundation engineering. Using particle size analysis and SEM, the working mechanism of ACB-16 is studied. The high molecular weight polymers located on the networking structures of the bentonite hinder the ion exchange between the calcium ions and the bentonite, thereby maintaining the thickness of the hydration membrane and the c-spacing of the bentonite and supporting the network structures generated by the hydrated bentonite. Direct mixing of ACB-16 with water can obtain a calcium-resistant drilling fluid with excellent properties. ACB-16 is easy to use, it will have good application prospects in foundation engineering and other fields, and it can also be used in formulating anti-sloughing drilling fluids for high calcium environment such as salt and gypsum drilling.
-
表 1 天然膨润土(MMT)的矿物组成
物相 石英 伊利石 钠长石 高岭石 蒙脱石 斜长石 含量/% 9.77 1.21 27.11 1.97 30.48 29.46 表 2 天然膨润土(MMT)钻井液的基本性能参数
膨润土 φ600 PV/
mPa·sYP/PV /
Pa/mPa·sFLAPI/
mL天然(MMT) 6 3 0 18.0 钻井级 ≥30 ≤1.50 ≤15.0 未处理 ≥10 ≤0.75 ≤12.5 表 3 优选的抗钙复合膨润土ACB-16的反应条件
单体质量比 引发剂/% 交联剂/% pH T反应/℃ t反应/h 8∶6∶1∶1 1 0.4 7 60 5 表 4 钻井液体系(去离子水)基础性能参数表
膨润土
材料AV/
mPa·sPV/
mPa·sYP/
PaYP/ PV/
Pa/mPa·sFLAPI/
mLACB-16 26.0 19 7.15 0.37 7.6 优钻100 16.0 8 8.00 1.00 14.0 钠基膨润土 16.5 12 4.59 0.38 12.0 钙基膨润土 17.5 13 4.59 0.35 15.4 凹凸棒土 27.0 19 8.17 0.43 10.0 -
[1] 资晓鱼,申玉生,连正,等. 超深地下连续墙槽壁位移及泥浆配制技术研究[J]. 路基工程,2021(2):140-147.ZI Xiaoyu, SHEN Yusheng, LIAN Zheng, et al. Study on displacement of trench wall of ultra-deep diaphragm wall and slurry configuration technology[J]. Subgrade Engineering, 2021(2):140-147. [2] XUE M, DAI Z K, LI Z, et al. Environmentally friendly comprehensive recycling utilization technology of foundation engineering slurry[J]. Construction and Building Materials, 2023, 368:130400. doi: 10.1016/j.conbuildmat.2023.130400 [3] 谢辉,叶井亮,陈娟,等. 基础工程浆液资源化综合利用技术[J]. 煤田地质与勘探,2022,50(12):177-184.XIE Hui, YE Jingliang, CHEN Juan, et al. Comprehensive recycling utilization technology of foundation engineering slurry[J]. Coal Geology & Exploration, 2022, 50(12):177-184. [4] 王岩,孙金声,黄贤斌,等. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能[J]. 钻井液与完井液,2018,35(2):23-28.WANG Yan, SUN Jinsheng, HUANG Xianbin, et al. Synthesis and properties of a high temperature calcium and salt resistant quinary copolymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):23-28. [5] 何瑞兵,赖全勇,许杰,等. 一袋化多功能钻井液的研究与应用[J]. 钻井液与完井液,2020,37(6):742-745,752.HE Ruibing, LAI Quanyong, XU Jie, et al. Study and application of "All-in-One bag" Multi-Function drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):742-745,752. [6] 张万栋,王爱佳,郭浩,等. 抗高温高钙梳型降滤失剂的制备与应用[J]. 钻井液与完井液,2022,39(4):435-440.ZHANG Wandong, WANG Aijia, GUO Hao, et al. Development and application of comb-like polymer filter loss reducer with high temperature and high Calcium contamination resistance[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):435-440. [7] 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40.SHU Yong, JIANG Luming, YANG Jun, et al. Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):35-40. [8] 常晓峰,孙金声,吕开河,等. 一种新型抗高温降滤失剂的研究和应用[J]. 钻井液与完井液,2019,36(4):420-426.CHANG Xiaofeng, SUN Jinsheng, LYU Kaihe, et al. Research and application of a novel high temperature filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):420-426. [9] WANG H, JIANG L S, ZHANG C R, et al. Ca-bentonite/polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate[J]. Journal of Cleaner Production, 2022, 365:132825. doi: 10.1016/j.jclepro.2022.132825 [10] 郭子赫,姜璐莎,王昆,等. 干湿循环作用下聚合物改性膨润土渗透特性研究[J]. 土木工程学报,2023,56(S1):55-63.GUO Zihe, JIANG Lusha, WANG Kun, et al. Hydraulic conductivity of polymer-modified bentonite under wet-dry cycles[J]. China Civil Engineering Journal, 2023, 56(S1):55-63. [11] 姜璐莎,李超越,卢光华,等. 聚合物改性膨润土在阻隔屏障中酸碱盐条件下的防渗效果[J]. 太原理工大学学报,2023,54(6):959-968.JIANG Lusha, LI Chaoyue, LU Guanghua, et al. Hydraulic performance of Polymer-Modified bentonite in containment barriers under aggressive conditions[J]. Journal of Taiyuan University of Technology, 2023, 54(6):959-968. [12] CHERIFI Z, BOUKOUSSA B, ZAOUI A, et al. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization[J]. Ultrasonics Sonochemistry, 2018, 48:188-198. doi: 10.1016/j.ultsonch.2018.05.027 [13] 丁锐,杨富贵,隋少鹏. 膨润土接枝聚合物降滤失剂研究[J]. 油田化学,2002,19(4):297-300.DING Rui, YANG Fugui, SUI Shaopeng. Preparation of polymer Grafted-on-Bentonite as filtrate loss rudcer for water base drilling fluids[J]. Oilfield Chemistry, 2002, 19(4):297-300. [14] ZHONG H Y, QIU Z S, HUANG W A, et al. Poly (oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids[J]. Applied Clay Science, 2012, 67/68:36-43. doi: 10.1016/j.clay.2012.06.002 [15] GB/T 5005-2010. 钻井液材料规范[S]. 北京: 中国标准出版社, 2010.GB/T 5005-2010. Specifications of drilling fluid materials[S]. Beijing: Standards Press of China, 2010. [16] 杨南如. 无机非金属材料测试方法[M]. 武汉: 武汉理工大学出版社, 1990.YANG nanru. Test methods for inorganic non-metallic materials[M]. Wuhan: Wuhan University of Technology Press, 1990. [17] 万红波,廖立兵. 膨润土中蒙脱石物相的定量分析[J]. 硅酸盐学报,2009,37(12):2055-2060.WAN Hongbo, LIAO Libing. Quantitative phase analysis of montmorillonite in bentonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(12):2055-2060. [18] 李志娟,王晓飞,周岐雄,等. 哈密某膨润土的性能表征与提纯[J]. 金属矿山,2014(9):72-76.LI Zhijuan, WANG Xiaofei, ZHOU Qixiong, et al. Performance characterization and purification of a bentonite ore in Hami[J]. Metal Mine, 2014(9):72-76. [19] 张玉文,张洋,宋涛. 高温下水基钻井液核心组分微观行为分析[J]. 钻井液与完井液,2024,41(1):39-44.ZHANG Yuwen, ZHANG Yang, SONG Tao. Microscopic behavior analysis of core components of water-based drilling fluid at high temperature[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):39-44. [20] 张永明. 聚合物/无机物纳米复合降滤失剂的研究[D]. 北京: 北京交通大学, 2010.ZHANG Yongming. Study on filtration reducer of polymer/inorganic nanocomposites[D]. Beijing: Beijing Jiaotong University, 2010. [21] BOUAZZA A, JEFFERIS S, VANGPAISAL T. Investigation of the effects and degree of Calcium exchange on the Atterberg limits and swelling of geosynthetic clay liners when subjected to wet–dry cycles[J]. Geotextiles and Geomembranes, 2007, 25(3):170-185. doi: 10.1016/j.geotexmem.2006.11.001 [22] 彭波,郭文宇,牟炜荣,等. 超声诱导提升钻井液降滤失剂褐煤树脂性能[J]. 钻井液与完井液,2023,40(4):481-486.PENG Bo, GUO Wenyu, MU Weirong, et al. Improving the performance of filter loss reducer lignite resin with ultrasonic induction[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):481-486. [23] 杨小华,王中华. 钻井液用高分子处理剂分子设计[J]. 精细与专用化学品,2010,18(1):14-18. doi: 10.3969/j.issn.1008-1100.2010.01.003YANG Xiaohua, WANG Zhonghua. Molecular design of polymer treatment agent used for drilling fluid[J]. Fine and Specialty Chemicals, 2010, 18(1):14-18. doi: 10.3969/j.issn.1008-1100.2010.01.003 [24] 王中华. 钻井液及处理剂新论[M]. 北京: 中国石化出版社, 2016.WANG zhonghua. New theory of drilling fluids and treatment agents[M]. Beijing: China Petrochemical Press , 2016. [25] 孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001 -