留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗钙复合膨润土的研制与评价

叶井亮 陈娟 刘福林 金纯正 杨现禹 蔡记华

叶井亮,陈娟,刘福林,等. 抗钙复合膨润土的研制与评价[J]. 钻井液与完井液,2024,41(4):458-466 doi: 10.12358/j.issn.1001-5620.2024.04.006
引用本文: 叶井亮,陈娟,刘福林,等. 抗钙复合膨润土的研制与评价[J]. 钻井液与完井液,2024,41(4):458-466 doi: 10.12358/j.issn.1001-5620.2024.04.006
YE Jingliang, CHEN Juan, LIU Fulin, et al.Development and evaluation of a calcium-resistant compound bentonite[J]. Drilling Fluid & Completion Fluid,2024, 41(4):458-466 doi: 10.12358/j.issn.1001-5620.2024.04.006
Citation: YE Jingliang, CHEN Juan, LIU Fulin, et al.Development and evaluation of a calcium-resistant compound bentonite[J]. Drilling Fluid & Completion Fluid,2024, 41(4):458-466 doi: 10.12358/j.issn.1001-5620.2024.04.006

抗钙复合膨润土的研制与评价

doi: 10.12358/j.issn.1001-5620.2024.04.006
详细信息
    作者简介:

    叶井亮,1985年生,研究生学历,现在从事市政工程、岩土工程方向的生产和管理工作。电话(027)84860601,E-mail: ycql@whycql.cn。

    通讯作者:

    金纯正,主要从事钻井液材料研发方面的研究工作。E-mail:20181003165@cug.edu.cn。

  • 中图分类号: TE254

Development and Evaluation of a Calcium-Resistant Compound Bentonite

  • 摘要: 在地下连续墙、桩基工程等施工过程中,钻井液频繁与混凝土接触,钙离子不断侵入钻井液,钻井液的工作性能会逐渐恶化,在施工结束后会产生大体量的废弃浆液。为提高钻井液的抗钙能力,减少废浆产量,有必要对天然膨润土进行改性处理。优选高速离心法对天然膨润土进行提纯,选用含碳碳双键的亲水性单体BX、含磺酸基团的亲水性单体AS和AP为聚合单体,在提纯后的膨润土层间发生自由基原位聚合反应,合成了抗钙复合膨润土ACB-16。傅立叶红外光谱、粒径分布、扫描电镜和透射电镜结果表明,单体成功在膨润土层间原位聚合。抗钙复合膨润土超过了OCMA级膨润土标准,所配制的钻井液表观黏度为26 mPa·s,API滤失量为7.6 mL,具有合适的流变性和良好的降滤失性,抗钙性能良好:在1% CaCl2污染下,钻井液流变性与滤失性性能稳定,极限抗Ca2+能力可达6300 mg/L(以CaCl2计为1.75%),可完全满足基础工程领域的钻井液抗钙需求。结合粒径分析与扫描电镜方法,分析其作用机理。位于膨润土网架结构中的高分子聚合物阻止Ca2+与膨润土发生离子交换作用,维持膨润土的水化膜厚度及层间距,支撑膨润土水化所形成的网架结构。直接将抗钙复合膨润土与水混合便可得到性能优异的抗钙钻井液,使用方便,在基础工程等领域具有良好的应用前景,也可以为盐膏层防塌钻井液等高钙环境钻井液的设计提供参考价值。

     

  • 图  1  提纯后天然膨润土吸蓝量及蒙脱石含量

    注:1为高速离心法,2为自然沉降法,3为复合提纯法

    图  2  复合膨润土ACB-X合成路线

    图  3  部分复合膨润土实验样品表观黏度及滤失量柱状图

    图  4  抗钙复合膨润土ACB-16与天然膨润土的FT-IR光谱图

    图  5  抗钙复合膨润土ACB-16与天然膨润土的粒径分析

    图  6  抗钙复合膨润土ACB-16扫描电镜与能谱分析结果

    图  7  抗钙复合膨润土ACB-16透射电镜与能谱面扫分析结果

    图  8  钻井液体系(1% CaCl2)基础性能参数柱状图

    图  9  不同Ca2+浓度下不同钻井液体系性能参数曲线

    图  10  不同Ca2+浓度下抗钙复合膨润土 ACB-16钻井液体系性能参数曲线

    图  11  不同溶剂下抗钙复合膨润土ACB-16的透射电镜图

    表  1  天然膨润土(MMT)的矿物组成

    物相石英伊利石钠长石高岭石蒙脱石斜长石
    含量/%9.771.2127.111.9730.4829.46
    下载: 导出CSV

    表  2  天然膨润土(MMT)钻井液的基本性能参数

    膨润土φ600PV/
    mPa·s
    YP/PV /
    Pa/mPa·s
    FLAPI/
    mL
    天然(MMT)63018.0
    钻井级≥30≤1.50≤15.0
    未处理≥10≤0.75≤12.5
    下载: 导出CSV

    表  3  优选的抗钙复合膨润土ACB-16的反应条件

    单体质量比引发剂/%交联剂/%pHT反应/℃t反应/h
    8∶6∶1∶110.47605
    下载: 导出CSV

    表  4  钻井液体系(去离子水)基础性能参数表

    膨润土
    材料
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/ PV/
    Pa/mPa·s
    FLAPI/
    mL
    ACB-1626.0197.150.377.6
    优钻10016.088.001.0014.0
    钠基膨润土16.5124.590.3812.0
    钙基膨润土17.5134.590.3515.4
    凹凸棒土27.0198.170.4310.0
    下载: 导出CSV
  • [1] 资晓鱼,申玉生,连正,等. 超深地下连续墙槽壁位移及泥浆配制技术研究[J]. 路基工程,2021(2):140-147.

    ZI Xiaoyu, SHEN Yusheng, LIAN Zheng, et al. Study on displacement of trench wall of ultra-deep diaphragm wall and slurry configuration technology[J]. Subgrade Engineering, 2021(2):140-147.
    [2] XUE M, DAI Z K, LI Z, et al. Environmentally friendly comprehensive recycling utilization technology of foundation engineering slurry[J]. Construction and Building Materials, 2023, 368:130400. doi: 10.1016/j.conbuildmat.2023.130400
    [3] 谢辉,叶井亮,陈娟,等. 基础工程浆液资源化综合利用技术[J]. 煤田地质与勘探,2022,50(12):177-184.

    XIE Hui, YE Jingliang, CHEN Juan, et al. Comprehensive recycling utilization technology of foundation engineering slurry[J]. Coal Geology & Exploration, 2022, 50(12):177-184.
    [4] 王岩,孙金声,黄贤斌,等. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能[J]. 钻井液与完井液,2018,35(2):23-28.

    WANG Yan, SUN Jinsheng, HUANG Xianbin, et al. Synthesis and properties of a high temperature calcium and salt resistant quinary copolymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):23-28.
    [5] 何瑞兵,赖全勇,许杰,等. 一袋化多功能钻井液的研究与应用[J]. 钻井液与完井液,2020,37(6):742-745,752.

    HE Ruibing, LAI Quanyong, XU Jie, et al. Study and application of "All-in-One bag" Multi-Function drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):742-745,752.
    [6] 张万栋,王爱佳,郭浩,等. 抗高温高钙梳型降滤失剂的制备与应用[J]. 钻井液与完井液,2022,39(4):435-440.

    ZHANG Wandong, WANG Aijia, GUO Hao, et al. Development and application of comb-like polymer filter loss reducer with high temperature and high Calcium contamination resistance[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):435-440.
    [7] 舒勇,江路明,杨俊,等. 环保型复合降滤失剂的研制与应用[J]. 钻井液与完井液,2023,40(1):35-40.

    SHU Yong, JIANG Luming, YANG Jun, et al. Development and application of an environmentally friendly compound filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):35-40.
    [8] 常晓峰,孙金声,吕开河,等. 一种新型抗高温降滤失剂的研究和应用[J]. 钻井液与完井液,2019,36(4):420-426.

    CHANG Xiaofeng, SUN Jinsheng, LYU Kaihe, et al. Research and application of a novel high temperature filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):420-426.
    [9] WANG H, JIANG L S, ZHANG C R, et al. Ca-bentonite/polymer nanocomposite geosynthetic clay liners for effective containment of hazardous landfill leachate[J]. Journal of Cleaner Production, 2022, 365:132825. doi: 10.1016/j.jclepro.2022.132825
    [10] 郭子赫,姜璐莎,王昆,等. 干湿循环作用下聚合物改性膨润土渗透特性研究[J]. 土木工程学报,2023,56(S1):55-63.

    GUO Zihe, JIANG Lusha, WANG Kun, et al. Hydraulic conductivity of polymer-modified bentonite under wet-dry cycles[J]. China Civil Engineering Journal, 2023, 56(S1):55-63.
    [11] 姜璐莎,李超越,卢光华,等. 聚合物改性膨润土在阻隔屏障中酸碱盐条件下的防渗效果[J]. 太原理工大学学报,2023,54(6):959-968.

    JIANG Lusha, LI Chaoyue, LU Guanghua, et al. Hydraulic performance of Polymer-Modified bentonite in containment barriers under aggressive conditions[J]. Journal of Taiyuan University of Technology, 2023, 54(6):959-968.
    [12] CHERIFI Z, BOUKOUSSA B, ZAOUI A, et al. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization[J]. Ultrasonics Sonochemistry, 2018, 48:188-198. doi: 10.1016/j.ultsonch.2018.05.027
    [13] 丁锐,杨富贵,隋少鹏. 膨润土接枝聚合物降滤失剂研究[J]. 油田化学,2002,19(4):297-300.

    DING Rui, YANG Fugui, SUI Shaopeng. Preparation of polymer Grafted-on-Bentonite as filtrate loss rudcer for water base drilling fluids[J]. Oilfield Chemistry, 2002, 19(4):297-300.
    [14] ZHONG H Y, QIU Z S, HUANG W A, et al. Poly (oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids[J]. Applied Clay Science, 2012, 67/68:36-43. doi: 10.1016/j.clay.2012.06.002
    [15] GB/T 5005-2010. 钻井液材料规范[S]. 北京: 中国标准出版社, 2010.

    GB/T 5005-2010. Specifications of drilling fluid materials[S]. Beijing: Standards Press of China, 2010.
    [16] 杨南如. 无机非金属材料测试方法[M]. 武汉: 武汉理工大学出版社, 1990.

    YANG nanru. Test methods for inorganic non-metallic materials[M]. Wuhan: Wuhan University of Technology Press, 1990.
    [17] 万红波,廖立兵. 膨润土中蒙脱石物相的定量分析[J]. 硅酸盐学报,2009,37(12):2055-2060.

    WAN Hongbo, LIAO Libing. Quantitative phase analysis of montmorillonite in bentonite[J]. Journal of the Chinese Ceramic Society, 2009, 37(12):2055-2060.
    [18] 李志娟,王晓飞,周岐雄,等. 哈密某膨润土的性能表征与提纯[J]. 金属矿山,2014(9):72-76.

    LI Zhijuan, WANG Xiaofei, ZHOU Qixiong, et al. Performance characterization and purification of a bentonite ore in Hami[J]. Metal Mine, 2014(9):72-76.
    [19] 张玉文,张洋,宋涛. 高温下水基钻井液核心组分微观行为分析[J]. 钻井液与完井液,2024,41(1):39-44.

    ZHANG Yuwen, ZHANG Yang, SONG Tao. Microscopic behavior analysis of core components of water-based drilling fluid at high temperature[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):39-44.
    [20] 张永明. 聚合物/无机物纳米复合降滤失剂的研究[D]. 北京: 北京交通大学, 2010.

    ZHANG Yongming. Study on filtration reducer of polymer/inorganic nanocomposites[D]. Beijing: Beijing Jiaotong University, 2010.
    [21] BOUAZZA A, JEFFERIS S, VANGPAISAL T. Investigation of the effects and degree of Calcium exchange on the Atterberg limits and swelling of geosynthetic clay liners when subjected to wet–dry cycles[J]. Geotextiles and Geomembranes, 2007, 25(3):170-185. doi: 10.1016/j.geotexmem.2006.11.001
    [22] 彭波,郭文宇,牟炜荣,等. 超声诱导提升钻井液降滤失剂褐煤树脂性能[J]. 钻井液与完井液,2023,40(4):481-486.

    PENG Bo, GUO Wenyu, MU Weirong, et al. Improving the performance of filter loss reducer lignite resin with ultrasonic induction[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):481-486.
    [23] 杨小华,王中华. 钻井液用高分子处理剂分子设计[J]. 精细与专用化学品,2010,18(1):14-18. doi: 10.3969/j.issn.1008-1100.2010.01.003

    YANG Xiaohua, WANG Zhonghua. Molecular design of polymer treatment agent used for drilling fluid[J]. Fine and Specialty Chemicals, 2010, 18(1):14-18. doi: 10.3969/j.issn.1008-1100.2010.01.003
    [24] 王中华. 钻井液及处理剂新论[M]. 北京: 中国石化出版社, 2016.

    WANG zhonghua. New theory of drilling fluids and treatment agents[M]. Beijing: China Petrochemical Press , 2016.
    [25] 孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001

    SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30. doi: 10.12358/j.issn.1001-5620.2024.01.001
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  76
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-06-08
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回