留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两亲性碳点在硅酸盐钻井液中的润滑性能

何丹丹 赖璐 梅平 卢福伟 吴娟

何丹丹,赖璐,梅平,等. 两亲性碳点在硅酸盐钻井液中的润滑性能[J]. 钻井液与完井液,2024,41(4):451-457 doi: 10.12358/j.issn.1001-5620.2024.04.005
引用本文: 何丹丹,赖璐,梅平,等. 两亲性碳点在硅酸盐钻井液中的润滑性能[J]. 钻井液与完井液,2024,41(4):451-457 doi: 10.12358/j.issn.1001-5620.2024.04.005
HE Dandan, LAI Lu, MEI Ping, et al.The lubricity of amphiphilic carbon dots in silicate drilling fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(4):451-457 doi: 10.12358/j.issn.1001-5620.2024.04.005
Citation: HE Dandan, LAI Lu, MEI Ping, et al.The lubricity of amphiphilic carbon dots in silicate drilling fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(4):451-457 doi: 10.12358/j.issn.1001-5620.2024.04.005

两亲性碳点在硅酸盐钻井液中的润滑性能

doi: 10.12358/j.issn.1001-5620.2024.04.005
基金项目: 国家重大科技专项“大型油气田及煤层气开发”(2016ZX05040-002)。
详细信息
    作者简介:

    何丹丹,1999年生,长江大学材料与化工专业在读硕士研究生,研究方向为油气田应用化学。E-mail:2082716128@qq.com

    通讯作者:

    吴娟,讲师,1988年生,研究方向为油气田应用化学。 E-mail:wujuan9818@126.com

  • 中图分类号: TE254.1

The Lubricity of Amphiphilic Carbon Dots in Silicate Drilling Fluids

  • 摘要: 硅酸盐钻井液具有抑制封堵能力强、环保等优点,但其润滑性能差,这制约了硅酸盐钻井液的广泛应用。利用极压润滑仪测定含有两亲性碳点和聚氧乙烯型表面活性剂的硅酸钠溶液的润滑系数,筛选出性能优异的润滑剂,并采用总有机碳分析仪、动态光散射和接触角仪等分析其润滑机理。实验结果发现,两亲性碳点具有优良的润滑性能和耐温性,在5%硅酸钠水溶液中添加0.3%两亲性碳点C12-CDs,经过110 ℃高温热滚16 h前后体系的极压润滑系数可从0.500左右分别降低至0.065和0.063,润滑系数降低率高达87.52%,而聚氧乙烯型表面活性剂并无润滑效果。进一步探究其润滑机理,C12-CDs在石英砂表面具有优异的吸附性能, 100 mg/L的C12-CDs溶液吸附前后的表面张力从44.81 mN/m上升为64.03 mN/m, 其吸附量可达到89.23 mg/L;且粒径分析数据表明,C12-CDs可将Na2SiO3溶液的平均粒径从514.0 nm分散为63.2 nm。碳核表面的多羟基结构和长疏水链可促进两亲性碳点在金属钻杆、井壁和硅酸聚集体表面的吸附,两亲性碳点作为润滑剂与硅酸钠钻井液体系配伍性能好,添加C12-CDs的现场硅酸盐钻井液润滑系数降低率可达到86.34%,可为硅酸盐水基钻井液润滑剂的现场应用提供理论指导。

     

  • 图  1  表面活性剂浓度对润滑性能的影响

    图  2  CDs胶束对润滑性能的影响

    图  3  C12-CDS在玻璃板表面吸附后的水滴接触角

    图  4  C12-CDS在石英砂表面吸附前后的表面张力值

    图  5  两亲性碳点和聚氧乙烯型表面活性剂   在吸附前后的TOC值(c =200 mg/L)

    图  6  不同混合溶液的粒径分布曲线

    图  7  钢球磨痕形貌的SEM照片

    表  1  5种表面活性剂的理化性质

    表面活性剂CMC/
    (mg·L−1)
    HLB亲水基团
    聚合度
    碳链长度
    C8-CDs100014~16C8
    C12-CDs20012~14C12
    OP-10200014.510C8
    AEO-93512.59C12~C18
    Tween801415.020C18
    下载: 导出CSV

    表  2  不同润滑剂的硅酸钠水溶液在    110 ℃热滚16 h前后的润滑系数

    序号加样润滑系数
    老化前老化后
    15%Na2SiO30.5210.530
    25%Na2SiO3+0.3%C12-CDs0.0650.063
    35%Na2SiO3+0.3%C8-CDs0.4920.489
    45%Na2SiO3+0.3%OP-100.5080.502
    55%Na2SiO3+0.3%AEO-90.5170.523
    65%Na2SiO3+0.3%Tween800.4890.511
    下载: 导出CSV

    表  3  两亲性碳点与硅酸盐钻井液的配伍性能评价

    C12-CDS/
    %
    ρ/
    g·cm−3
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    砂盘封堵
    滤失量/mL
    pH润滑系数
    降低率/%
    01.09214.313.65.25.911.52
    0.11.09514.914.25.15.611.6876.34
    0.21.09915.214.65.36.011.5182.65
    0.31.10015.815.25.05.411.6686.34
    下载: 导出CSV
  • [1] YANG S C, WANG X Y, PAN Y, et al. Environmentally friendly drilling fluid lubricant: a review[J]. Industrial & Engineering Chemistry Research, 2023, 62(21):8146-8162.
    [2] RANA A, ARFAJ M K, SALEH T A. Advanced developments in shale inhibitors for oil production with low environmental footprints–a review[J]. Fuel, 2019, 247:237-249. doi: 10.1016/j.fuel.2019.03.006
    [3] 游云武,许明标,由福昌. 硅酸钾钻井液在页岩气水平井中的可行性研究[J]. 探矿工程(岩土钻掘工程),2016,43(7):116-120.

    YOU Yunwu, XU Mingbiao, YOU Fuchang. Feasibility study of potassium silicate drilling horizontal wells in shale gas[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(7):116-120.
    [4] 孙金声,蒋官澄,贺垠博,等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版),2023,47(5):76-89.

    SUN Jinsheng, JIANG Guancheng, HE Yinbo, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5):76-89.
    [5] MA J Y, XIA B R, AN Y X. Advanced developments in low-toxic and environmentally friendly shale inhibitor: a review[J]. Journal of Petroleum Science and Engineering, 2022, 208:109578. doi: 10.1016/j.petrol.2021.109578
    [6] 南小宁,郑力会,童庆恒. 硅酸盐钻井液技术发展机遇与挑战[J]. 钻采工艺,2015,38(6):75-78. doi: 10.3969/J.ISSN.1006-768X.2015.06.24

    NAN Xiaoning, ZHENG Lihui, TONG Qingheng. Opportunities and challenges for the development of silicate drilling fluid technology[J]. Drilling & Production Technology, 2015, 38(6):75-78. doi: 10.3969/J.ISSN.1006-768X.2015.06.24
    [7] SALEH T A, RANA A. Surface-modified biopolymer as an environment-friendly shale inhibitor and swelling control agent[J]. Journal of Molecular Liquids, 2021, 342:117275. doi: 10.1016/j.molliq.2021.117275
    [8] 雷正勇,许明标,由福昌,等. 适用于页岩气水平井的低摩阻硅酸钾钻井液体系[J]. 钻井液与完井液,2021,38(1):62-67.

    LEI Zhengyong, XU Mingbiao, YOU Fuchang, et al. Low friction potassium silicate drilling fluid system for shale gas horizontal wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):62-67.
    [9] GUO J, YAN J, FAN W, et al. Applications of strongly inhibitive silicate-based drilling fluids in troublesome shale formations in Sudan[J]. Journal of Petroleum Science and Engineering, 2006, 50(3–4):195-203.
    [10] 刘超,刘建芳. 植物油基润滑剂的化学修饰方法及进展[J]. 润滑与密封,2021,46(11):148-156.

    LIU Chao, LIU Jianfang. Chemical modification methods of lubricants based on vegetable Oils and their progress[J]. Lubrication Engineering, 2021, 46(11):148-156.
    [11] 王宗轮,孙金声,刘敬平,等. 耐高温高盐钻井液润滑剂的研制与性能评价[J]. 钻井液与完井液,2022,39(5):538-544.

    WANG Zonglun, SUN Jinsheng, LIU Jingping, et al. Development and performance evaluation of high temperature salt resistant drilling lubricant[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):538-544.
    [12] 蒋巍. 海上硅酸钠聚合醇钻井液的研制[J]. 石油化工高等学校学报,2019,32(4):52-57.

    JIANG Wei. Research on sodium silicate polyalcohol drilling fluid for marine[J]. Journal of Petrochemical Universities, 2019, 32(4):52-57.
    [13] HU Y, WANG Y, WANG C, et al. One-pot pyrolysis preparation of carbon dots as eco-friendly nanoadditives of water-based lubricants[J]. Carbon, 2019, 152:511-520. doi: 10.1016/j.carbon.2019.06.047
    [14] 尹克样,闫明明,王新宇,等. 烷基化液体碳点用于提高石蜡基基础油的摩擦学性能[J]. 摩擦学学报,2020,40(5):664-672.

    YIN Keyang, YAN Mingming, WANG Xinyu, et al. Application of alkylated liquid carbon points to improve the tribological properties of paraffin-based base oils[J]. Tribology, 2020, 40(5):664-672.
    [15] 周雅文,景姝,赵莉,等. 表面活性剂的性能与应用(ⅩⅦ)——表面活性剂在石油工业中的应用[J]. 日用化学工业,2015,45(5):247-251.

    ZHOU Yawen, JING Shu, ZHAO Li, et al. Performance and applications of surfactants (ⅩⅦ) Application of surfactants in petroleum industry[J]. China Surfactant Detergent & Cosmetics, 2015, 45(5):247-251.
    [16] YANG Y, ZHAO M, LAI L. Surface activity, micellization, and application of nano-surfactants—amphiphilic carbon dots[J]. Carbon, 2023, 202:398-413. doi: 10.1016/j.carbon.2022.11.012
    [17] VELKAVRH I, KALIN M. Comparison of the effects of the lubricant-molecule chain length and the viscosity on the friction and wear of diamond-like-carbon coatings and steel[J]. Tribology International, 2012, 50:57-65. doi: 10.1016/j.triboint.2012.01.008
    [18] HOFFMANN B, PLATZ G. Phase and aggregation behaviour of alkylglycosides[J]. Current Opinion in Colloid & Interface Science, 2001, 6(2):171-177.
    [19] BAKUNIN V N, KUZ'MINA G N, PARENAGO O P. Additive efficiency and micellar structure of lubricants[J]. Lubrication Science, 2004, 16(3):255-266. doi: 10.1002/ls.3010160306
    [20] YOU F C, ZHOU S S, KE D, et al. Effect of a novel lubricant embedded with alcohol ether, amide and amine motifs for silicate drilling fluid on bit balling and lubrication: an experimental study[J]. Arabian Journal for Science and Engineering, 2022, 47(9):11879-11886. doi: 10.1007/s13369-022-06730-8
    [21] DENG X, KAMAL M S, PATIL S, et al. A review on wettability alteration in carbonate rocks: wettability modifiers[J]. Energy & Fuels, 2019, 34(1):31-54.
    [22] TOTLAND C, LEWIS R T. Mechanism of calcite wettability alteration by alkyl polyglucoside[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 488:129-137.
    [23] NAZARI B, RANJBAR Z, HASHJIN R R, et al. Dispersing graphene in aqueous media: investigating the effect of different surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 582:123870. doi: 10.1016/j.colsurfa.2019.123870
    [24] 张静静,许明标,由福昌,等. 一种高效环保润滑剂ZYA的制备及其在硅酸盐体系中的适用性评价[J]. 科学技术与工程,2019,19(33):151-156. doi: 10.3969/j.issn.1671-1815.2019.33.022

    ZHANG Jingjing, XU Mingbiao, YOU Fuchang, et al. Preparation of a highly effective environmentally friendly lubricant ZYA and its applicability in silicate system[J]. Science Technology and Engineering, 2019, 19(33):151-156. doi: 10.3969/j.issn.1671-1815.2019.33.022
    [25] 杨旭坤,蒋官澄,贺垠博,等. 多巴仿生润滑剂在水基钻井液中的应用及机理研究[J]. 钻井液与完井液,2023,40(6):749-755,764. doi: 10.12358/j.issn.1001-5620.2023.06.008

    YANG Xukun, JIANG Guancheng, HE Yinbo, et al. Application and mechanisms of dopa biomimetic lubricant in water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):749-755,764. doi: 10.12358/j.issn.1001-5620.2023.06.008
    [26] 高重阳,黄贤斌,白英睿,等. 水基钻井液用抗超高温聚合物刷润滑剂的研制[J]. 钻井液与完井液,2023,40(4):453-461.

    GAO Chongyang, HUANG Xianbin, BAI Yingrui, et al. Development of ultra-high temperature polymer brush lubricant for water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):453-461.
    [27] 陈磊,张小平,贾俊. 环保型抗高温复合抗泥包润滑剂的制备及应用[J]. 钻井液与完井液,2022,39(6):738-742. doi: 10.12358/j.issn.1001-5620.2022.06.011

    CHEN Lei, ZHANG Xiaoping, JIA Jun. Preparation and performance evaluation of environment-friendly anti-high temperature composite anti-mud-bag lubricant[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):738-742. doi: 10.12358/j.issn.1001-5620.2022.06.011
    [28] 魏昱,王骁男,安玉秀,等. 钻井液润滑剂研究进展[J]. 油田化学,2017,34(4):727-733.

    WEI Yu, WANG Xiaonan, AN Yuxiu, et al. Research development of drilling fluid lubricant[J]. Oilfield Chemistry, 2017, 34(4):727-733.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  82
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-04-29
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回