Ultra-Low Density Drilling Fluid Technology for Drilling Ultra-Deep Fractured Carbonate Reservoirs
-
摘要: 塔里木油田压力系数低于1.0的超深井碳酸盐岩低压储层常发生钻井液失返性井漏,其平均井深超过6000 m,井控风险极大,除了强钻再无更好手段,往往只能提前完井。为提升超深井水平段延伸能力,研究人员研发了高强度空心玻璃微珠,可配制密度为0.93~1.07 g/cm3的超低密度水基钻井液。详述了中古262-H4C井井漏失返后利用低密度水基钻井液重建井筒循环、恢复常规定向钻进的施工过程。现场钻井液密度最低降至0.98 g/cm3,井漏失返后多钻373 m,实现了一井钻穿两个缝洞体的地质目的,保障了该井井漏失返后钻至设计井深,开创了空心玻璃微珠超低密度钻井液在国内垂深超6000 m的超深井应用先例,为我国类似老区低压地层应用提供了技术参考。Abstract: Ultra-deep wells with pressure coefficient less than 1.0 in Tarim oilfield are generally faced with lost circulation of mud in drilling the low-pressured carbonate reservoirs. These wells, with an average depth of over 6,000 m, have high risks of well control, thus, apart from drilling with no return when lost circulation is encountered, no other better means can be used to drill the wells to the designed depths, and in many cases, the wells can only be completed before drilling to the designed depths. To extend the lengths of the horizontal sections of the ultra-deep wells, researchers have developed high strength hollow micro glass beads for formulating water-based drilling fluids with density in a range of 0.93 g/cm3 to 1.07 g/cm3. This paper describes in detail the operation process of the well Zhonggu 262-H4C in which lost circulation was encountered and a low density drilling fluid was then used to regain circulation and drilling was resumed directionally to the designed depth. In the field operation, the density of the drilling fluid was reduced to 0.98 g/cm3, and additional 373 m was drilled after the circulation, realizing the geological goal of one well to penetrate two fractured-vuggy bodies. This measure ensures that the well to be drilled to the designed depth after encountering lost circulation, setting a precedent of drilling an ultra-deep well with vertical depth over 6,000 m using low density drilling fluid formulated with hollow micro glass beads, and providing a technical reference for drilling low-pressured formations in old oilfields in China.
-
表 1 不同微珠加量对钻井液性能的影响
微珠/
%ρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL0 1.03 28 18 10 2/5 5.2 9.8 3 1.01 32 20 12 3/5 5.2 9.8 5 1.00 34 23 11 3/6 5.0 9.4 7 0.99 36 26 10 3/7 5.0 9.2 10 0.98 44 30 14 5/10 4.8 9.2 注:基础浆配方:3.5%膨润土+2%SMP-3+3%SPNH+2%PSC-2+0.5%AP220+2%FT-1A,实验条件为160 ℃、16 h。 表 2 除硫剂加量对超低密度钻井液性能的影响
除硫剂/
%ρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL0 1 29 22 7 3/6 5.0 16.4 1 1.02 38 25 13 4/8 5.2 16.4 3 1.05 48 28 20 7/11 5.0 16 5 1.08 56 33 23 9/15 4.7 15.6 注:配方:3.5%膨润土+2%SMP-3+3%SPNH+2%PSC-2+0.5%AP220+2%FT-1A+5%玻璃微珠;实验条件为160 ℃、16 h。 表 3 1.04 g/cm3超低密度钻井液的性能(测试温度50 ℃)
配方 ρ/
g·cm-3PV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mL井浆 1.08 11 1.5 0/1.0 8.6 基础浆+2%除硫剂 1.06 14 2.0 0.5/1.5 10.6 基础浆+2%除硫剂+
6%玻璃微珠1.04 17 2.0 0.5/2.0 7.2 注:1.08 g/cm³井浆∶胶液=1∶1(胶液配方为0.2%烧碱+1%SMP-2+1%SPNH +1%TYJS-1 +1%MYK-1);钻井液pH值为11。 -
[1] 叶艳,鄢捷年. 高强度空心玻璃微珠低密度水基钻井液室内研究及应用[J]. 石油钻探技术,2006,34(3):41-44.YE Yan, YAN Jienian. Lab tests and applications of the HGS low-density water-based drilling fluid[J]. Petroleum Drilling Techniques, 2006, 34(3):41-44. [2] 张振华, 鄢捷年, 樊世忠. 低密度钻井流体技术[M]. 东营: 石油大学出版社, 2004.ZHANG Zhenhua, YAN Jienian, FAN Shizhong. Low density drilling fluid technology[M]. Dongying: Petroleum University Press, 2004. [3] 李晓波. 超低密度钻井液技术在大庆油田易漏复杂层的应用[J]. 石油工业技术监督,2020,36(2):1-4,11.LI Xiaobo. Application of ultra-low density drilling fluid technology in leaky-prone complex layer of Daqing oilfield[J]. Technology Supervision in Petroleum Industry, 2020, 36(2):1-4,11. [4] 耿晓光,郑涛,周大宇,等. HGS低密度钻井液在全过程欠平衡水平井中的应用[J]. 钻井液与完井液,2008,25(6):87-88.GENG Xiaoguang, ZHENG Tao, ZHOU Dayu, et al. The application of HGS low density drilling fluid in an underbalanced horizontal well[J]. Drilling Fluid & Completion Fluid, 2008, 25(6):87-88. [5] 陈思路. 空心玻璃微珠在沈289井欠平衡钻井中的应用[J]. 石油钻探技术,2010,38(1):60-62.CHEN Silu. Applications of hollow glass bubbles in underbalanced drilling on well Shen-289[J]. Drilling Petroleum Techniques, 2010, 38(1):60-62. [6] 孟尚志,鄢捷年,蔡恩宏,等. 低密度空心微珠玻璃球钻井液室内研究[J]. 钻井液与完井液,2007,24(1):26-27.MENG Shangzhi, YAN Jienian, CAI Enhong, et al. Laboratory research on the low density hollow glass micro-sphere Muds[J]. Drilling Fluid & Completion Fluid, 2007, 24(1):26-27. [7] 柳雷,许传华,虞夏. 高性能空心玻璃微珠在油气田开采中的应用[J]. 化学工程与装备,2014(12):92-94,131.LIU Lei, XU Chuanhua, YU Xia. Application of high performance hollow glass microspheres in oil and gas field exploitation[J]. Chemical Engineering & Equipment, 2014(12):92-94,131. [8] 左景栾,孙晗森,周卫东,等. 适用于煤层气开采的低密度钻井液技术研究与应用[J]. 煤炭学报,2012,37(5):815-819.ZUO Jingluan, SUN Hansen, ZHOU Weidong, et al. Study and application of light weight drilling fluid applied to coalbed methane development[J]. Journal of China Coal Society, 2012, 37(5):815-819. [9] 张宏军. 中空玻璃微珠超低密度水泥浆体系评价与应用[J]. 石油钻采工艺,2011,33(6):41-44.ZHANG Hongjun. Hollow glass particles super low density slurry evaluation and application[J]. Petroleum Drilling and Production Technology, 2011, 33(6):41-44. [10] 张雪娜,康万利,何福义,等. 中空玻璃微珠低密度钻井液性能探讨[J]. 钻井液与完井液,2007,24(6):75-77.ZHANG Xuena, KANG Wanli, HE Fuyi, et al. A discussion on the properties of Muds treated with hollow glass spheres light weight agent[J]. Drilling Fluid & Completion Fluid, 2007, 24(6):75-77. [11] 王都,谢志涛,罗斐. 空心玻璃微珠钻井液在海洋深水钻井中的应用研究[J]. 化工管理,2016(33):127.WANG Dou, XIE Zhitao, LUO Fei. Application of hollow glass bead drilling fluid in offshore deepwater drilling[J]. Chemical Enterprise Management, 2016(33):127. [12] 朱金勇,万宇豪,陈礼仪,等. 空心玻璃微珠在钻井液中的分散性能评价及微观机理研究[J]. 科学技术与工程,2016,16(13):168-172.ZHU Jinyong, WAN Yuhao, CHEN Liyi, et al. Performance evaluation and microscopic mechanism research of hollow glass beads scattered in drilling fluid[J]. Science Technology and Engineering, 2016, 16(13):168-172. [13] 张宇,张洪伟,刘华,等. 无固相微泡沫钻井液在华北潜山地层的应用[J]. 西部探矿工程,2019,31(2):88-90,96.ZHANG Yu, ZHANG Hongwei, LIU Hua, et al. Application of solid-free micro-foam drilling fluid in buried hill formation of huabei oilfield[J]. West-China Exploration Engineering, 2019, 31(2):88-90,96. [14] 张绍俊. 低密度全油基钻井液在塔中低压油气藏的应用研究[D]. 成都: 西南石油大学, 2015.ZHANG Shaojun. Application of low density oil-based drilling fluid in Tazhong low pressure reservoir[D]. Chengdu: Southwest Petroleum University, 2015. [15] 朱春光. 抗高温无固相可循环微泡沫钻井液技术研究与应用[D]. 大庆: 东北石油大学, 2015.ZHU Chunguang. Research and application of the anti high temperature no-soild aphrons technology[D]. Daqing: Northeast Petroleum University, 2015. [16] 田磊. 塔里木油田气体钻井工艺剂及现场试验[D]. 大庆: 东北石油大学, 2016.TIAN Lei. Research on the control system of oil extraction joint station based on PLC[D]. Daqing: Northeast Petroleum University, 2016. [17] 于志成. 纳米颗粒稳定微泡沫钻井液体系研究[D]. 大庆: 东北石油大学, 2023.YU Zhicheng. Study on nanoparticle stabilized micro-foam drilling fluid system[D]. Daqing: Northeast Petroleum University, 2023. [18] 迟建功. 无固相全油基微泡沫钻井液在水平钻井中的应用[J]. 西部探矿工程,2022,34(12):53-55.CHI Jiangong. Application of solids-free full oil-based micro-foam drilling fluid in horizontal drilling[J]. West-China Exploration Engineering, 2022, 34(12):53-55. [19] 朱文茜,郑秀华. 抗温可循环微泡沫钻井液的研究进展与应用现状[J]. 应用化工,2021,50(6):1594-1599,1606.ZHU Wenqian, ZHENG Xiuhua. Research progress and application status of temperature-resistant colloidal gas aphron drilling fluid[J]. Applied Chemical Industry, 2021, 50(6):1594-1599,1606. [20] 王超群,陈缘博,赵志强,等. 国外微泡沫钻井液技术新进展及探讨[J]. 钻井液与完井液,2020,37(2):133-139.WANG Chaoqun, CHEN Yuanbo, ZHAO Zhiqiang, et al. Micro foam drilling fluid technology abroad: new progress and discussion[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):133-139. -