Control Mud Losses into Carbonate Reservoirs with Polymer Gels in Tahe Oilfield
-
摘要: 塔河油田地质条件复杂,缝洞性碳酸盐岩储层孔缝洞发育,在此储层钻进过程中常出现放空、发生井漏,并引发井喷、井塌、卡钻等复杂事故,常规桥堵技术难以有效封堵。针对塔河油田老井修完井过程中的漏失难题,研制了一种抗高温聚合物凝胶堵漏剂,对其进行性能评价可知,聚合物凝胶成胶前基液黏度在13~14.5 mPa·s范围内,150 ℃下成胶时间在30~150 min内可控,成胶后失去流动性,形成高强度凝胶塞,具有较高承压强度,使用3 mm裂缝钢铁岩心(长5 cm)模拟储层进行封堵能力评价,封堵压力可达2.1 MPa/42 cm;凝胶具有较好的抗污染性能,稳定性良好;凝胶破胶性能显著,加入碱液改变环境pH值后,可实现48 h破胶成为低黏流体,破胶后的凝胶可满足岩心渗透率恢复值≥85%。该耐温聚合物凝胶既能实现高效封堵,也能有效解堵,在修井作业、恶性漏失等方面具有较好的应用前景。Abstract: Carbonate reservoirs in the Tahe oilfield are developed with fractures and vugs, drilling into vugs and lost circulation which in turn inducing blowout, borehole wall collapse and stuck pipe have frequently been encountered, and conventional bridging techniques cannot be used to effectively control the mud losses. To deal with the mud loss problem encountered in well workover and completion of old wells, a high temperature polymer gel lost circulation material (LCM) has been developed. Evaluation of the performance of the polymer gel LCM shows that before gelling, the viscosity of the polymer base fluid is in a range of 13 – 14.5 mPa∙s. At 150 ℃, the gelling time of the polymer can be adjusted between 30 min and 150 min. After gelling, the polymer gel loses its mobility and forms a high-strength gel plug. The polymer gel is tested on a 5 cm long iron-made core with 3 mm fractures, which simulates fractures found in the carbonate reservoirs, and a pressure bearing capacity of 2.1 MPa/42 cm is obtained. The polymer gel has good contamination resistance and good stability. The gel of the polymer can be easily broken, by adding alkaline solution into the gel to change the pH value, the gel becomes a low viscosity fluid in 48 h. After gel breaking, the permeability recovery of the rock cores that have been plugged with the gel can be greater than 85%. This high temperature polymer gel can be used to effectively plug formation pores and vugs, it can also be effectively removed away, thus making it a good choice for severe mud losses controlling in workover operations.
-
Key words:
- Polymer gel /
- Well workover /
- Self gel breaking /
- High temperature reservoir
-
表 1 凝胶在不同时间、不同温度的热稳定性
t老化/
d65 ℃ 120 ℃ 150 ℃ 胶块
强度脱水率/
%胶块
强度脱水率/
%胶块
强度脱水率/
%10 I 0.20 I 0.50 I 1.10 20 I 1.10 I 1.40 I 2.90 30 I 1.80 I 4.90 H 6.80 40 I 3.20 H 8.40 G 13.20 50 H 5.60 G 11.80 F 16.60 60 G 8.90 F 14.60 D 20.40 表 2 凝胶的抗污染能力评价(150 ℃、16 h)
污染物 t成胶/min pH 封堵压力/MPa 25%油基钻井液 78 9 1.4 25%水基钻井液 78 11 1.0 25%钠土浆(10%) 70 9 1.4 25%油田模拟水 75 9 1.5 未污染(对照组) 70 8 1.6 表 3 岩心破胶后的渗透率(150 ℃)
编号 不同条件下的渗透率/mD 原始液 成胶后 第1次
破胶后第2次
破胶后第3次
破胶后第4次
破胶后第5次
破胶后1# 5.25 0.08 0.72 1.69 2.66 4.01 4.92 2# 11.28 0.22 0.88 1.98 3.36 5.58 9.60 3# 3.60 0.20 0.44 0.91 1.45 2.15 3.22 表 4 破胶液污染岩心后渗透率变化
t/
d4# 5# 渗透率/mD 伤害率/% 渗透率/mD 伤害率/% 0 0.78 0 0.92 0 1 0.14 82.05 0.08 93.47 3 0.32 58.96 0.22 76.09 -
[1] 王伟志, 刘庆来, 郭新健, 等. 塔河油田防漏堵漏技术综述[J]. 探矿工程: 岩土钻掘工程,2019,46(3):42-46,50.WANG Weizhi, LIU Qinglai, GUO Xinjian, et al. Review of lost circulation prevention and plugging techniques in Tahe Oilfield[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(3):42–46,50. [2] 李源. 塔河油田奥陶系岩溶储层发育与海西早期水文地貌响应关系研究[D]. 武汉: 中国地质大学, 2016.LI Yuan. relationship between Relationship between the development of Ordovician karst reservoir and Hydrogeomorphologic in Hercynian, Tahe Oilfield[D]. Wuhan: China University of Geosciences, 2016. [3] 廖明光, 裴钰, 陈培元, 等. 塔河油田4区岩溶缝洞型储层及其控制因素[J]. 西南石油大学学报(自然科学版),2013,35(4):1-8.LIAO Mingguang, PEI Yu, CHEN Peiyuan, et al. Formation and controlling factors of karst fracture-cave reservoir in the 4th block of Tahe oilfield[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2013, 35(4):1–8. [4] 李大奇, 康毅力, 曾义金, 等. 缝洞型储层缝宽动态变化及其对钻井液漏失的影响[J]. 中国石油大学学报(自然科学版),2011,35(5):76-81.LI Daqi, KANG Yili, ZENG Yijin, et al. Dynamic variation of fracture width and its effects on drilling fluid lost circulation in fractured vuggy reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2011, 35(5):76–81. [5] 康志宏, 戎意民, 魏历灵, 等. 塔河油田奥陶系碳酸盐岩岩溶储集体类型及划分方法研究[J]. 现代地质,2014,28(5):986-994. doi: 10.3969/j.issn.1000-8527.2014.05.014KANG Zhihong, RONG Yimin, WEI Liling, et al. Approach to karst reservoir types and classification of ordovician carbonate in Tahe oilfield[J]. Geoscience, 2014, 28(5):986–994. doi: 10.3969/j.issn.1000-8527.2014.05.014 [6] 牛玉静, 康志宏, 龙旭, 等. 塔河油田奥陶系岩溶油藏溶洞储集体成因及演化[J]. 现代地质,2011,25(4):650-659. doi: 10.3969/j.issn.1000-8527.2011.04.005NIU Yujing, KANG Zhihong, LONG Xu, et al. Origin and evolution of ordovician karst cave reservoir in Tahe oilfield[J]. Geoscience, 2011, 25(4):650–659. doi: 10.3969/j.issn.1000-8527.2011.04.005 [7] 胡挺, 曾权先, 李华磊, 等. 冻胶阀完井技术研究与应用[J]. 石油钻采工艺,2012,34(1):32-35. doi: 10.3969/j.issn.1000-7393.2012.01.009HU Ting, ZENG Quanxian, LI Hualei, et al. Study and application of smart pack completion technology[J]. Oil Drilling & Production Technology, 2012, 34(1):32–35. doi: 10.3969/j.issn.1000-7393.2012.01.009 [8] 王宝田,杨倩云,杨华. 形状记忆聚合物型温控膨胀堵漏剂SDP制备技术[J]. 钻井液与完井液,2022,39(1):41-45. doi: 10.12358/j.issn.1001-5620.2022.01.007WANG Baotian, YANG Qianyun, YANG Hua. Research on preparation technology of temperature-controlled expansion plugging agent based on shape memory polymer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):41–45 doi: 10.12358/j.issn.1001-5620.2022.01.007 [9] 魏安超,刘书杰,蒋东雷,等. 裂缝性储层环氧树脂自降解堵漏剂的制备与评价[J]. 钻井液与完井液,2023,40(2):163-168. doi: 10.12358/j.issn.1001-5620.2023.02.003WEI Anchao, LIU Shujie, JIANG Donglei, et al. Synthesis and evaluation of epoxy resin self-degradation plugging agent for fractured formation[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):163–168 doi: 10.12358/j.issn.1001-5620.2023.02.003 [10] 何星, 欧阳冬, 马淑芬, 等. 塔河油田缝洞型碳酸盐岩油藏漏失井堵水技术[J]. 特种油气藏,2014,21(1):131-134. doi: 10.3969/j.issn.1006-6535.2014.01.033HE Xing, OU YANG Dong, MA Shufen, et al. Water plugging technology for lost circulation wells in fractured carbonate reservoirs in Tahe Oilfield[J]. Special Oil & Gas Reservoirs, 2014, 21(1):131–134. doi: 10.3969/j.issn.1006-6535.2014.01.033 [11] ALBONICO P, BARTOSEK M, LOCKHART T P, et al. New polymer gels for reducing water production in high-temperature reservoirs[C]//European Production Operations Conference and Exhibition, Aberdeen: SPE, 1994: 15-17. [12] BRYANT S L, BORGHI G P, BARTOSEK M, et al. Experimental investigation on the injectivity of Phenol-Formaldehyde/polymer Gels[J]. SPE Journal, 1998, 3(4):373–381. doi: 10.2118/52980-PA [13] 齐彪,李银婷,乐明,等. 塔河油田一井多靶可酸溶堵漏技术[J]. 钻井液与完井液,2022,39(6):730-737. doi: 10.12358/j.issn.1001-5620.2022.06.010QI Biao, LI Yinting, YUE Ming, et al. Study on an acid soluble LCM used for multi-target well in Tahe oilfield[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):730–737 doi: 10.12358/j.issn.1001-5620.2022.06.010 -