Study on Evaluating Effects of Biocides in Fracturing Fluids with Optical Fiber Tweezer Method
-
摘要: 夏季压裂施工中,由于胍胶压裂液受到细菌等微生物滋生的影响,可能导致液体腐化变质,致使压裂液失效。为此通常需要加入杀菌剂对压裂液中腐生菌进行消除,但目前缺少能够在微观层面评价杀菌剂杀菌效果的技术手段。为此,提出了一种基于光纤光镊的杀菌剂杀菌效果评估技术手段,利用锥形光纤光镊捕获添加杀菌剂前后的腐生菌,在微观尺度分析其运动规律,以此反演杀菌剂的杀菌效果。实验结果表明,该方法可以有效评估腐生菌的活性,对于添加杀菌剂后,腐生菌细胞失活,其运动幅度大幅下降,大约只在0.8~0.9 μm 。而对于正常的腐生菌,其运动幅度通常在12.1 μm左右。证实了该方法在评估杀菌剂杀菌效果的可行性,为直接评价杀菌剂性能的优劣提供了可靠的理论依据。Abstract: In summer fracturing operation, microorganisms such as bacteria can cause the guar gum fracturing fluids to spoil and lose their effectiveness. Bactericides have thus to be used in the fracturing fluids to kill the bacteria. Presently there is no technical means of evaluating the performance of the bactericides. In this study a method based on optical fiber tweezer (OFT) is presented to evaluate the performance of the bactericides. The saprophytic bacteria are first captured before and after adding a bactericide into a fracturing fluid with a conical OFT, the movement pattern of the bacteria is then analyzed at microscopic scale, and this process can be used to invert the effect of the bactericides. Experimental results show that this method can be used to effectively evaluate the activity of the saprophytic bacteria. After adding bactericides into a fracturing fluid, the cells of the saprophytic bacteria become inactive and the movement distance of the saprophytic bacteria is greatly reduced to about only 0.8 – 0.9 μm. For saprophytic bacteria without contacting with bactericides, the movement distance is generally about 12.1 μm. The study proves that the OFT method is effective in evaluating the performance of bactericides, and it provides a reliable theoretical base for the direct evaluation of the performance of bactericides.
-
表 1 不同杀菌剂浓度下腐生菌运动幅值
杀菌剂浓度/% 0 10 20 30 40 50 腐生菌幅值/μm 12.1 7.2 3.6 1.5 0.9 0.8 -
[1] 陈巧梅. 酸性压裂液在大庆油田泥页岩储层的应用[J]. 化学工程与装备,2022(4):46-47.CHEN Qiaomei. Application of acidic fracturing fluid in shale reservoirs in Daqing Oilfield[J]. Fujian Chemical Industry, 2022(4):46-47. [2] 迟洪涛. 缝网压裂技术在低渗透油层开发中的应用[J]. 化学工程与装备,2019(7):173-175.CHI Hongtao. The application of fracture network fracturing technology in the development of low-permeability oil reservoirs[J]. Fujian Chemical Industry, 2019(7):173-175. [3] 黄有泉,李永环,顾明勇. 松北致密油水平井体积压裂技术适应性分析[J]. 石油地质与工程,2021,35(5):80-84. doi: 10.3969/j.issn.1673-8217.2021.05.016HUANG Youquan, LI Yonghuan, GU Mingyong. Adaptability analysis of volume fracturing technology of horizontal wells for tight oil reservoirs in Songbei basin[J]. Petroleum Geology and Engineering, 2021, 35(5):80-84. doi: 10.3969/j.issn.1673-8217.2021.05.016 [4] 任志刚. 压裂增效辅助压力检测工具的研究[J]. 中国设备工程,2020(15):162-163.REN Zhigang. Research on auxiliary pressure detection tools for enhancing fracturing efficiency[J]. China Plant Engineering, 2020(15):162-163. [5] 唐维民. 大庆油田二次加砂压裂工艺技术研究[J]. 化学工程与装备,2019(5):35-36,38.TANG Weimin. Research on secondary sanding and fracturing technology in Daqing Oilfield[J]. Fujian Chemical Industry, 2019(5):35-36,38. [6] 翟怀建,阿不都卡德尔·阿不都热西提,汪志臣,等. 压裂返排液回收利用过程的杀菌处理技术[J]. 中小企业管理与科技:上旬刊,2015(8):190.ZHAI Huaijian, ABUDURESITI Abudukadel, WANG Zhichen, et al. Sterilization treatment technology for the recovery and utilization process of fracturing backflow fluid[J]. Management & Technology of SME, 2015(8):190. [7] 常青,邹春凤,蔡景超,等. 胍胶压裂液用高效杀菌剂研究及现场应用[J]. 钻井液与完井液,2023,40(4):535-539.CHANG Qing, ZOU Chunfeng, CAI Jingchao, et al. Research and application of high-efficiency bactericide for guar gum fracturing fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):535-539. [8] 吴丽蓉,罗兆,王群立,等. 瓜胶压裂液用杀菌剂评价指标有效性的影响因素[J]. 钻井液与完井液,2017,34(5):91-95.WU Lirong, LUO Zhao, WANG Qunli, et al. Key factors affecting the effectiveness of evaluating indicators for bactericides used in HPGG fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):91-95. [9] 谢元,崔国涛,刘鑫,等. 低浓度羟丙基瓜尔胶压裂液体系的研究[J]. 石油化工应用,2016,35(7):9-13.XIE Yuan, CUI Guotao, LIU Xin, et al. The research of low concentration hydroxypropyl guar gum fracturing fluid system[J]. Petrochemical Industry Application, 2016, 35(7):9-13. [10] 王月,袁曦,王彦然,等. 页岩气田细菌腐蚀与控制技术研究及应用[J]. 石油与天然气化工,2021,50(5):75-78.WANG Yue, YUAN Xi, WANG Yanran, et al. Research and application of bacterial corrosion and control technology in shale gas fields[J]. Chemical Engineering of Oil and Gas, 2021, 50(5):75-78. [11] 钟慧,高丙坤,党雨婷,等. 利用单光纤光镊实现不同折射率的微粒分选[J]. 光学精密工程,2023,31(8):1115-1123. doi: 10.37188/OPE.20233108.1115ZHONG Hui, GAO Bingkun, DANG Yuting, et al. Particle sorting with different refractive indices using single fiber optical tweezers[J]. Optics and Precision Engineering, 2023, 31(8):1115-1123. doi: 10.37188/OPE.20233108.1115 [12] 陈朋,党雨婷,钟慧,等. 基于LP01和LP11模式共存的单光纤光镊实现生物细胞多路捕获和操纵[J]. 光学学报,2023,43(4):45-53.CHEN Peng, DANG Yuting, ZHONG Hui, et al. Single-Fiber optical tweezer based on coexistence of LP01 and LP11 modes for multiplexed capture and manipulation of biological cells[J]. Acta Optica Sinica, 2023, 43(4):45-53. [13] 汤晓云,张亚勋,张羽,等. 基于光纤光镊的粒子捕获与操纵[J]. 物理实验,2021,41(7):1-16.TANG Xiaoyun, ZHANG Yaxun, ZHANG Yu, et al. Optical trapping and manipulation based on optical fiber tweezers[J]. Physics Experimentation, 2021, 41(7):1-16. [14] 王秀芳,刘旭,董太极,等. 用于可控式粒子捕获和轴向往复运动的电流调制型单光纤光镊[J]. 光学学报,2023,43(14):75-81.WANG Xiufang, LIU Xu, DONG Taiji, et al. Current-Modulated single fiber optical tweezers for controlled particle capture and axial reciprocating motion[J]. Acta Optica Sinica, 2023, 43(14):75-81. [15] 周瑞雪,王海燕,朱德斌,等. 光镊技术在生物学中的应用新进展[J]. 激光生物学报,2017,26(4):289-293.ZHOU Ruixue, WANG Haiyan, ZHU Debin, et al. New advances in the application of optical tweezers in biology[J]. Acta Laser Biology Sinica, 2017, 26(4):289-293. [16] 申泽. 基于光纤光镊的细胞捕获、运输、旋转操纵研究[D]. 桂林: 桂林电子科技大学, 2021.SHEN Ze. Cell trapping. Transport and rotation manipulation based on optical tweezers[D]. Guilin: Guilin University of Electronic Technology, 2021. -