留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滑溜水压裂液用超疏水型多功能减阻剂制备及应用

冯奇 蒋官澄 张朔 黄胜铭 王全得 王文卓

冯奇,蒋官澄,张朔,等. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用[J]. 钻井液与完井液,2024,41(3):405-413 doi: 10.12358/j.issn.1001-5620.2024.03.017
引用本文: 冯奇,蒋官澄,张朔,等. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用[J]. 钻井液与完井液,2024,41(3):405-413 doi: 10.12358/j.issn.1001-5620.2024.03.017
FENG Qi, JIANG Guancheng, ZHANG Shuo, et al.Preparation and application of superhydrophobic multifunctional drag reducing agents for slickwater fracturing fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(3):405-413 doi: 10.12358/j.issn.1001-5620.2024.03.017
Citation: FENG Qi, JIANG Guancheng, ZHANG Shuo, et al.Preparation and application of superhydrophobic multifunctional drag reducing agents for slickwater fracturing fluids[J]. Drilling Fluid & Completion Fluid,2024, 41(3):405-413 doi: 10.12358/j.issn.1001-5620.2024.03.017

滑溜水压裂液用超疏水型多功能减阻剂制备及应用

doi: 10.12358/j.issn.1001-5620.2024.03.017
基金项目: 国家自然科学基金重大项目“页岩油气高效开发基础理论研究”(51490653)。
详细信息
    作者简介:

    冯奇,1991年生,在读博士研究生,现在从事压裂液研发与推广应用。电话 (010)89732196;E-mail:18563073299@163.com

    通讯作者:

    蒋官澄,教授,博士生导师,研究方向为钻井液完井液化学与工程、油气层损害与保护技术。电话 (010)89732196;E-mail:jgc5786@126.com

  • 中图分类号: TE357.12

Preparation and Application of Superhydrophobic Multifunctional Drag Reducing Agents for Slickwater Fracturing Fluids

  • 摘要: 目前常规滑溜水压裂液体系普遍具有减阻、携砂、抗盐和耐温等多种功能,但均没有考虑通过改变储层表面润湿性而实现储层保护功能。因此,以丙烯酸、丙烯酰胺、自制材料2-丙烯酰胺基-2-苯基乙烷磺酸和疏水改性剂等为原料,合成了一种超疏水型多功能压裂液用减阻剂SHJZ-1。通过红外光谱仪对合成产物减阻剂结构进行表征,且通过高温高压岩心动态损害评价系统、接触角测量仪、哈克流变仪、闭合管路摩阻测试仪等方法对其性能进行综合评价。结果表明,该减阻剂SHJZ-1溶解时间短,起黏快;当盐水的矿化度达到40 000 mg/L时,0.5%SHJZ-1溶液的减阻率在68%左右;0.15%SHJZ-1溶液在140 ℃下高温老化,减阻率仍能达到70%以上;1.3% SHJZ-1溶液处理后的岩心表现出超疏水效果,岩心接触角为151.21°;该减阻剂溶液对岩心平均渗透率伤害率仅为11.6%。超疏水型多功能压裂液体系在HX-1井顺利进行了现场应用,压裂过程中压裂液性能比较平稳,压后产量与临井相比提升10%以上,实现了提质增效的目的。

     

  • 图  1  纳米二氧化硅表面改性示意图

    图  2  SHJZ-1的合成示意图

    图  3  SHJZ-1配制成水溶液前后的微观形貌

    图  4  SHJZ-1红外光谱图

    图  5  不同浓度SHJZ-1溶液的黏度与溶解时间的关系

    图  6  SHJZ-1溶液的表观黏度与浓度的关系

    图  7  滑溜水压裂液体系中加入不同浓度 减阻剂后减阻率随剪切速率的变化

    图  8  不同浓度SHJZ-1滑溜水压裂液的静态携砂情况

    图  9  0.6%SHJZ-1溶液在不同时刻下的静态沉降情况

    图  10  NaCl、KCl对超疏水型多功能 减阻剂溶液减阻率的影响

    图  11  二价盐对减阻剂溶液表观黏度的影响

    图  12  老化温度对不同溶液减阻率的影响

    图  13  不同浓度的减阻剂溶液对岩石接触角的影响

    图  14  减阻剂水溶液的表面活性

    图  15  HX-1井第一段压裂施工曲线

    表  1  减阻剂溶液对岩心的伤害性能

    SHJZ-1/%Ko/mDKd/mD渗透率伤害率/%平均伤害率/%
    0.11.0540.94610.211.6
    0.31.1050.98610.8
    0.51.0120.89611.5
    0.71.0890.95612.2
    1.01.0410.90513.1
    下载: 导出CSV
  • [1] 蒋其辉,杨向同,于筱溪,等. 国内外滑溜水减阻剂研究进展[J]. 化学工业与工程,2022,39(2):76-83.

    JIANG Qihui, YANG Xiangtong, YU Xiaoxi, et al. Research progresses of slick-water drag reducer at home and abroad[J]. Chemical Industry and Engineering, 2022, 39(2):76-83.
    [2] 刘倩,管保山,刘玉婷,等. 滑溜水压裂液用降阻剂的研究与应用进展[J]. 油田化学,2020,37(3):545-551.

    LIU Qian, GUAN Baoshan, LIU Yuting, et al. Progress of development and application of drag reduction agents for slick-water fracturing[J]. Oilfield Chemistry, 2020, 37(3):545-551.
    [3] 陈昊,毕凯琳,张军,等. 非常规油气开采压裂用减阻剂研究进展[J]. 油田化学,2021,38(2):347-359.

    CHEN Hao, BI Kailin, ZHANG Jun, et al. Progress of drag reducers used in slickwater hydrofracturing of unconventional hydrocarbons[J]. Oilfield Chemistry, 2021, 38(2):347-359.
    [4] 魏云,沈秀伦,周伟,等. 准噶尔盆地砂砾岩储层压裂液损害及保护措施[J]. 钻井液与完井液,2022,39(4):508-515. doi: 10.12358/j.issn.1001-5620.2022.04.017

    WEI Yun, SHEN Xiulun, ZHOU Wei, et al. Damage of sandy conglomerate reservoirs in dzungar basin by fracturing fluids and measures for protection of the reservoir damage[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):508-515. doi: 10.12358/j.issn.1001-5620.2022.04.017
    [5] 刘红磊,韩倩,李颖,等. 彭水区块水平井清水连续加砂压裂技术[J]. 石油钻探技术,2015,43(1):13-19.

    LIU Honglei, HAN Qian, LI Ying, et al. Water fracturing with continuous sand for horizontal wells in the pengshui block[J]. Petroleum Drilling Techniques, 2015, 43(1):13-19.
    [6] 李永飞,王彦玲,曹勋臣,等. 页岩储层压裂用减阻剂的研究及应用进展[J]. 精细化工,2018,35(1):1-9.

    LI Yongfei, WANG Yanling, CAO Xunchen, et al. Progress in research and application of drag reducer for shale reservoir fracturing[J]. Fine Chemicals, 2018, 35(1):1-9.
    [7] SUN Y, ZHOU C Y, LI Y F, et al. Preparation and properties research of a bifunctional hydrophobic associative polymer drag reduction agent for slick water[J]. Journal of Applied Polymer Science, 2023, 140(11):e53625. doi: 10.1002/app.53625
    [8] AFTEN C, PAKTINAT J, O'NEIL B. Critical evaluation of Biocide-Friction reducer interactions used in slickwater fracs[C]//SPE International Symposium on Oilfield Chemistry. The Woodlands, Texas, USA, 2011: SPE-141358-MS.
    [9] 王娟娟,刘通义,赵众从,等. 减阻剂乳液的合成与性能评价[J]. 应用化工,2014,43(2):308-310,315.

    WANG Juanjuan, LIU Tongyi, ZHAO Zhongcong, et al. Synthesis and performance evaluation of drag reduction agent emulsion[J]. Applied Chemical Industry, 2014, 43(2):308-310,315.
    [10] 魏娟明,刘建坤,杜凯,等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27-32.

    WEI Juanming, LIU Jiankun, DU Kai, et al. The development and application of inverse emulsified friction reducer and slickwater system[J]. Petroleum Drilling Techniques, 2015, 43(1):27-32.
    [11] CHEN P F, CHANG H G, PENG T, et al. Synthesis and performance evaluation of a new drag reducer based on acrylamide/12-allyloxydodecyl acid sodium[J]. Journal of Applied Polymer Science, 2021, 138(30):50314. doi: 10.1002/app.50314
    [12] GUO H. Synthesis and evaluation of new slickwater fracturing fluid for drag reduction[J]. IOP Conference Series. Earth and Environmental Science, 2021, 651:032082. doi: 10.1088/1755-1315/651/3/032082
    [13] 徐太平,李栓,周京伟,等. 滑溜水压裂液用乳液降阻剂的合成及应用[J]. 精细石油化工,2022,39(6):23-27.

    XU Taiping, LI Shuan, ZHOU Jingwei, et al. Synthesis and application of emulsion reducing agent for slickwater fracturing fluid[J]. Speciality Petrochemicals, 2022, 39(6):23-27.
    [14] QING M M, QI J, ZHI C F, et al. Enhancement for drag reducer release efficiency from inverse polymer emulsion using pH-responsive dynamic covalent surfactant[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2024, 681:132830. doi: 10.1016/j.colsurfa.2023.132830
    [15] 刘培培,何定凯,潘柯羽,等. 非常规油藏多功能滑溜水体系研究与应用[J]. 精细石油化工进展,2022,23(6):1-5.

    LIU Peipei, HE Dingkai, PAN Keyu, et al. Research and application of multifunctional slick?water system in unconventional reservoirs[J]. Advances in Fine Petrochemicals, 2022, 23(6):1-5.
    [16] 陈意萍. 纳米SiO2改性三头基Gemini型清洁压裂液的研究与应用[D]. 成都: 西南石油大学, 2020.

    CHEN Yiping. Research and application of nano SiO2 modified ternary Gemini type clean fracturing fluid[D]. Chengdu: SouthWest Petroleum University, 2020. .
    [17] DING F, DAI C L, SUN Y P, et al. A new temperature-resistant and fast dissolving nano-silica/poly (AM-AMPS) composite drag reducer for slickwater fracturing[J]. Journal of Molecular Liquids, 2023, 387:122678. doi: 10.1016/j.molliq.2023.122678
    [18] XU H, ZHOU F J, LI Y, et al. Preparation and properties evaluation of novel silica gel-based fracturing fluid with temperature tolerance and salt resistance for geoenergy development[J]. Arabian Journal of Chemistry, 2023, 16(12):105324. doi: 10.1016/j.arabjc.2023.105324
    [19] KORLEPARA N K, PATEL N, DILLEY C, et al. Understanding effect of fluid salinity on polymeric drag reduction in turbulent flows of slickwater fluids[J]. Journal of Petroleum Science and Engineering, 2022, 216:110747. doi: 10.1016/j.petrol.2022.110747
    [20] 颜菲,于梦红,罗成,等. 特低渗储层压裂用降阻剂CFZ-1的研制及应用[J]. 油田化学,2019,36(1):63-67.

    YAN Fei, YU Menghong, LUO Cheng, et al. Preparation and application of friction reducing agent CFZ-1 for fracturing in ultra-low permeability reservoir[J]. Oilfield Chemistry, 2019, 36(1):63-67.
    [21] 凌勇,刘文明,王翔宇,等. 新型聚羧酸减阻剂的研究与应用[J]. 钻井液与完井液,2019,36(6):742-748.

    LING Yong, LIU Wenming, WANG Xiangyu, et al. Study and application of a new poly carboxylic acids drag reducer[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):742-748.
    [22] 蒋官澄,张弘,吴晓波,等. 致密砂岩气藏润湿性对液相圈闭损害的影响[J]. 石油钻采工艺,2014,36(6):50-54.

    JIANG Guancheng, ZHANG Hong, WU Xiaobo, et al. Effect of tight sandstone gas reservoir wettability on liquid traps damage[J]. Oil Drilling & Production Technology, 2014, 36(6):50-54.
    [23] LI Y F, WANG Y L, WANG Q, et al. Achieving the super Gas-Wetting alteration by functionalized Nano-Silica for improving fluid flowing capacity in gas condensate reservoirs[J]. ACS Applied Materials & Interfaces, 2021, 13(9):10996-11006.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  94
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-02-19
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回